Heavy flavor and high-pt results from STAR

Veronica.Verkest@wayne.edu

Friday, March 31, 2023

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

Veronica Verkest (Wayne State University) for the STAR Collaboration

Probing the Quark-Gluon Plasma

- Jets: energy loss and broadening from interactions with the QGP (jet quenching)
- **Open heavy flavor**: larger mass \rightarrow less energy loss (dead cone effect)
- **Quarkonia:** colored dipole \rightarrow sensitive to the temperature of QGP
 - Higher excited quarkonium states \rightarrow lower binding energy \rightarrow "thermometer"

Rafelski, Eur. Phys. J. A 51 (2015) 114

Collision systems

- Vacuum reference
- Jet and heavy flavor production in vacuum described by pQCD

• Null experiment

- Assume no hot nuclear mater
- CNM effects: all but hot nuclear effects

If we understand production in p+p and have assessed CNM effects, we can attribute modification of hard probes in heavy-ion collisions to hot nuclear effects

p+A

- Nuclear density large enough to create a hot, dense QGP
- Modification of hard probes as a tool to study microscopic structure

The STAR detector

Beam-beam counter (BBC)

- Triggering detector
- East inner BBC: $-5.2 < \eta < -3.3$
- **Barrel electromagnetic** calorimeter (BEMC)
- γ, π⁰, e[±], ...
- $|\eta| < 1; \quad 0 < \phi < 2\pi$

Time projection chamber (TPC)

- Charged tracks
- Measures momentum & PID (*dE/dx*)
- $|\eta| < 1; \quad 0 < \phi < 2\pi$

Time-of-flight (TOF)

- Time of flight measurement
- PID for π , K, p at intermediate p_{T}

Heavy flavor tracker (HFT)

• Vertex reconstruction from HF decays

Muon telescope detector (MTD)

Identifies muons; triggers on quarkonia

- split number
- z_g becomes flat at the third split
- R_{o} becomes narrower with successive splits

Jet sub-structure in vacuum

• Strong dependence of groomed jet momentum fraction (z_{ρ}) and radius (R_{ρ}) on

$$z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \qquad R_g = \Delta R(1, 2)$$

Change from soft, wide-angle to hard, collinear splitting over time 5

J/ψ production with jet activity

6

- Dependence of the J/ψ production cross section on the jet activity (jet multiplicity per event)
- Corrected for overall scale, PYTHIA8 over-predicts J/ψ production in events with jets
- Ongoing: can be used to discriminate between different production mechanisms (colorsinglet vs. color-octet)

p+A: cold nuclear matter

- Null experiment to study cold nuclear matter effects
 - CNM effects: all effects of a larger collision system NOT due to hot nuclear matter effects
- Is a p+A collision simply a superposition of p+p collisions?
- Recent studies show unexpected modification of cross-sections as a function of centrality in p(d)+A collisions—typically characteristic of hot nuclear effects
 - are there hot or cold nuclear matter effects or something else?

d+Au, $\sqrt{s_{NN}}$ = 200 GeV PHENIX anti- k_t , R=0.3 jet

Are jets modified in p+Au?

- Yield of semi-inclusive jets per high- $p_{\rm T}$ charged hadron trigger is suppressed in high event activity (EA) events relative to low EA events, where EA is the
 - charged underlying event $p_{\rm T}$ density at mid-rapidity ($|\eta| < 1$)
- The suppression is comparable for jets on the trigger and recoil side-inconsistent with energy loss in medium

_35 (GeV/*c*)

Are jets modified in p+Au?

Jet mass is consistent between events with high and low EA, therefore the jet itself is not modified within uncertainty

Event activity in p+Au

$< EA_{BBC} >$

- 22780 ± 30
- 21870 ± 60
- 21200 ± 100
- jets uncorrected for detector effects
 - statistical errors only

- Anti-correlation between EA_{BBC} at large backward rapidity and leading jet $p_{\rm T}$ at mid-rapidity
 - Events selected by higher (lower) jet $p_{\rm T}$ have a lower (higher) average EA_{BBC}, naively classified as more peripheral (central)

50000 70000 60000 EABBC Correlation of hard and soft particle production due to early-time effects (over large rapidity)

STAR, Phys.Lett.B 825 (2022) 136865

• $J/\psi R_{\rho+Au}$ consistent with unity above 3 GeV/c; agreement with R_{d+Au} measured in PHENIX

Therefore, little CNM observed for J/ψ above 3 GeV/c in small systems within uncertainty

 Suppression in central Au+Au mostly due to hot medium effects

R_{pA} described reasonably by models within uncertainty

Small systems summary

- Jet substructure measurements \rightarrow study jets' evolution and resolving power
- Investigate J/ψ production mechanism

 Jet yield suppression suggests correlation between hard and soft production (no mass modification)

• No CNM effects

vacuum

p+A

observed for J/ψ at highp_T within systematics

How are these hard probes modified by hot nuclear matter in heavy-ion collisions?

nuclear density

- peripheral
- region of overlap
 - Energy loss at LHC is larger than at RHIC

STAR, Phys.Rev.C 102 (2020) 054913

Charged jets and hadrons strongly suppressed in central Au+Au collisions relative to

R_{CP} in Au+Au at 200 GeV is similar to LHC measurements of Pb+Pb at 2.76 TeV within $(d^2N_{AA}/dp_T d\eta)^{\text{cent.}}/N_{\text{coll}}^{\text{cent.}}$ R_{CP} $(d^2N_{AA}/dp_T d\eta)^{\text{periph.}}/N_{\text{coll}}^{\text{periph.}}$

Suppression of D⁰ jets

- Significant D⁰ suppression at low jet p_T in central and mid-central events
- Jet radial profile ratios for $D^0 p_T > 5$ GeV/c consistent with unity within uncertainties

- Isobar collisions: medium-sized system
- $J/\psi R_{AA}$ suppression in isobar is consistent with Au+Au collisions at comparable <N_{part}>
- **Suppression driven** by system size <N_{part}>, not collision geometry

STAR, Phys.Rev.C 105 (2022) 044906

STAR, Phys.Rev.C 105 (2022) 044906

- color charge radiating in medium!

Upsilon RAA in Au+Au

STAR, Phys.Rev.Lett. 130 (2023) 112301

- Possibility for hot medium to "melt" bound states; use different Υ states like a QGP "thermometer"
- Suppression of all Υ in Au+Au; suppression is larger in more central collisions
- Higher excited states more suppressed due to their lower binding energies

Summary

p+p

- Used differential substructure to probe parton shower evolution • Change from soft, wide-angle to hard, collinear splits • J/ψ is measured with associated jet activity to discriminate different models (color-
- singlet vs. color octet)

- Early-time correlations found between hard, mid-rapidity and soft, backward-rapidity particle production
- Possible explanation for jet yield modification as a function of centrality • No significant CNM effects at high p_T in J/ψ

- J/ψ suppression in isobar consistent with suppression in Au+Au at similar $\langle N_{part} \rangle$ Matched dijet asymmetry shows no angular dependence of jet energy loss • Upsilon R_{AA} in Au+Au shows greater suppression of higher excited states Veronica Verkest @ Moriond 2023

Backup

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ is much steeper at RHIC energies than LHC energies

 In order to have suppression comparable to that at RHIC, the jet p_T spectrum at the LHC would need to shift downward even further

$$R_{CP} = \frac{\left(d^2 N_{AA}/dp_T d\eta\right)^{\text{cent.}}/N_{co}^{\text{cent.}}}{\left(d^2 N_{AA}/dp_T d\eta\right)^{\text{periph.}}/N_{co}^{\text{periph.}}}$$

Multidimensional substructure STAR Preliminary $p + p \sqrt{s} = 200 \text{ GeV}$ MultiFold 0.30 0.25 0.20 0.15 0.10 anti-kT full jets, R=0.4, |n|<0.6 MultiFolded with pT, Q, M, Mg, Rg, Zg 25 < pT < 30 GeV/c 20 < pT < 25 GeV/c 0 < pT < 40 GeV/c 0.25 20 < p_T < 30 GeV/c $< p_T < 50 \text{ GeV/c}$ 0.20 1 dN(Q) Q) dM(Q) [C²/G ¥ 0.05

0.00

- MultiFold: simultaneous, unbinned unfolding, agreement with RooUnfold
- Study substructure observables $(p_{\rm T}, Q, M, M_g, R_g, z_g)$ at the hardest split to characterize jets
- Study mass and weighted jet charge \rightarrow determine initiator (gluon or quark flavor)

Uncorrelated s

J/ ψ polarization in p+p

STAR, Phys.Rev.D 102 (2020) 092009

- J/ψ polarization is dependent on production mechanism; polarization measurements can help inform and discern between mechanisms
- Measurements show polarization is consistent with zero within errors; this is in agreement with the models shown
- These values are also in agreement with measurements from PHENIX in **2020** PHENIX, Phys.Rev.D 102 (2020) 072008

J/ψ production with jet activity

- ${\color{black}\bullet}$

Corrected for overall scale, PYTHIA8 over-predicts J/ ψ production in events with jets Different J/ ψ production mechanisms may be associated with different jet multiplicities Ongoing: compare different production mechanisms (color-singlet and color-octet models)

- $J/\psi R_{AA}$ shows suppression in isobar is consistent with Au+Au at comparable Npart
 - Similar densities \rightarrow similar E-loss

- <u>1212.3304.pdf</u>)
- Isobar expected to have less non-flow (contamination) due to lower mass
- v₂ in isobar also consistent with zero

J/w dimuon & dielectron RAA

• J/ψ via dielectron in STAR shows excess J/ψ production at low p_T in peripheral collisions

J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 123, 132302

- Comparison with preliminary dimuon measurements show similar trends – enhancement at low p_T is confirmed
- These observations are consistent with coherent photon-nucleon interactions

$$R_{AA} = \frac{1}{N_{coll}} \frac{d^2 N_{AA}/dp_T dy}{d^2 N_{pp}/dp_T dy}$$

Are jets modified in p+Au?

Jet mass in p+Au events are consistent with p+p jet mass

STAR, Phys.Rev.D 104 (2021) 052007

Lajoie <u>https://moriond.in2p3.fr/2021/QCD/</u>

PHENIX R_{d+Au} erratum

- An erratum to the PHENIX R_{d+Au} is being prepared
- The analysis was re-done after removing noisy towers
- R_{d+Au} no longer shows jet suppression in central events, but still shows enhancement in peripheral events

PARTICLE	SYMBOL	MASS (GEV)
PHOTON	γ	0
NEUTRINO	ν	0
ELECTRON	е	.0005
MUON	μ	.105
PI	π^0	.135
MESONS	π^{\pm}	.140
K MESONS	K ±	.494
PROTON	p	.938
NEUTRON	n	.940
PHI	φ	1.020
LAMBDA	Λ	1.116
CHARMED	D°	1.863
MESONS	D+	1.868
CHARMED LAMBDA	Λα	2.260
J OR PSI FAMILY	J/ψ	3.098
	ψ'	3.684
UPSILON FAMILY	Y	9.4
	Y'	10.0
	Y''	10.4

http://physics.gmu.edu/~rubinp/courses/440-540/undergrad/LedermanUpsilon.pdf

