Study of first-order event plane correlated directed and triangular flow
from fixed-target energies at RHIC-STAR
Sharang Rav Sharma (for the STAR collaboration)
Indian Institute of Science Education and Research (IISER) Tirupati

Anisotropic flow parameters (v_n) are important observables as they provide insight into the collec-6 tive expansion and transport properties of the medium produced in relativistic heavy-ion collisions. 7 Among these parameters, directed flow (v_1) describes the collective sideward motion of produced 8 particles in heavy-ion collisions. It is an important probe to study the in-medium dynamics as it is sensitive to the equation of state (EoS) of the produced medium. Minimum in the slope of directed 10 flow (dv_1/dy) as a function of collision energy has been proposed as a signature of the first-order 11 phase transition between hadronic matter and Quark-Gluon Plasma (QGP). Triangular flow (v_3) 12 typically arises from the initial state fluctuations and is expected to be uncorrelated with the reac-13 tion plane. However, recent measurements at lower collision energies show a correlation between v_3 14 and the first-order event plane angle (Ψ_1) . 15 In this presentation, we will report the measurements of Ψ_1 correlated v_1 and v_3 for π , K, p, net-16

¹⁶ In this presentation, we will report the measurements of Ψ_1 correlated v_1 and v_3 for π , K, p, het-¹⁷ kaon, net-proton, d, t, and ³He in Au+Au collisions at $\sqrt{s_{NN}} = 3.2, 3.5, 3.9$, and 4.5 GeV taken ¹⁸ in fixed-target mode from the second phase of the beam energy scan (BES-II) program at RHIC-¹⁹ STAR. We will show the dependencies of v_1 and v_3 on rapidity, centrality, and collision energy, and ²⁰ subsequently, discuss their physics implications. The experimental measurements will be compared ²¹ with the results from the JAM transport model to understand the underlying physics mechanisms

²² at low collision energies.