Measurement of Anisotropic Flow for BES-II Energies at RHIC-STAR

Sharang Rav Sharma (for the STAR Collaboration) Indian Institute of Science Education and Research Tirupati, India

XXXI International Conference on Ultra-relativistic Nucleus-Nucleus Collisions Goethe University, Frankfurt am Main, Germany.

Outline

2

3

4

Introduction

Beam Energy Scan program at RHIC and Anisotropic flow

STAR Experiment

STAR Detector Upgrade, Fixed target setup and particle identification

Results and Discussion

Experimental measurements and theoretical model comparison for directed (v_1) , elliptic (v_2) , and triangular flow (v_3) .

Summary

Introduction

At very high temperature/energy density, a deconfined phase of quarks and gluons is expected to form → Quark-Gluon Plasma (QGP)

v, = 10 %

-0.5 0

0.5

-1.5

v₂ = 10 %

1.5 -1.5

1.5 Ty

0.5-

0.5

-0.5 0

-0.5

Anisotropic Flow

Ouark Matter 2025

- * **Flow** is the measure of azimuthal anisotropy of particles
- **Azimuthal distribution of particles**

R. Snellings, New J.Phys.13:055008 (2011) A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

STAR

YEARS

1.5 Ty

0.5-

0.5

-0.5 0

v₃ = 10 %

1.5 -1.5

STAR Experiment

- 1) Extended pseudorapidity acceptance
- 2) Improved particle identification
- 3) Enhanced event plane resolution

Major Upgrades in BES-II

iTPC:

- \succ Improves dE/dx
- > Extends η coverage from ± 1.0 to ± 1.5
- $\succ \qquad \text{Lowers } p_T \text{ cut from 125 to} \\ 60 \text{ MeV/c} \end{cases}$
- \succ Ready in 2019

eTOF:

➢ Forward rapidity coverage

- > PID at $\eta = -1.1$ to -1.6
- ➤ Ready in 2019

EPD:

- > Improves trigger
- \succ Event plane measurements
- \succ Ready in 2018

STAR Fixed-target Setup

- 0.25 mm Gold target at z = 200 cm, 2 cm below beam axis.
- $\sqrt{s_{NN}} = 3.0 13.7 \text{ GeV}$ (FXT)

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/. public/sn0619; eTOF: STAR and CBM eTOF group, arXiv: 1609.05102; EPD: J. Adams, et al. NIM A968, 163970 (2020)

Particle Identification

TPC

Two main detectors are used for particle identification in **STAR**

Time Projection Chamber (TPC)

$$z_X = \ln\left(\frac{\langle dE/dx \rangle}{\langle dE/dx \rangle_X^B}\right)$$

Time of Flight (TOF)

Good particle identification capability based on dE/dx and m^2 information from TPC and TOF respectively

Quark Matter 2025

Motivation: Directed flow (v₁)

- dv₁/dy for proton contrary to mesons showed a non-monotonic trend as function of collision energy → Change of sign
- Net particle (the excess of a particle over antiparticle) gives contribution of transported quarks w.r.t produced
- Observed minima in v₁ slope of net-p and net-Λ between 11.5 and 19.6 GeV, no minima observed for net-K
- Light nuclei d(v₁/A)/dy within systematic and statistical uncertainties ⇒ test for nucleon coalescence mechanism

Quark Matter 2025

Slope of directed flow

- Increasing collision energy \rightarrow decreasing v₁ slope for the measured energies
 - > $dv_1/dy|_{\pi^+}$ is negative whereas $dv_1/dy|_{\pi^-}$ is positive \rightarrow Spectator shadowing (3.0 4.5 GeV)
- ♦ Net-K changes sign at *lower collision energy* (4.5 7.7 GeV) compared to Net-p (11.5 14.5 GeV)

STAR: Phys. Rev. Lett. 120, 062301 (2018); STAR: Phys. Rev. C 102, 044906 (2020)

STAR

YEARS

Directed flow of light nuclei

- Magnitude of v_1 increases with increasing rapidity
- ✤ JAM MD2 with coalescence provides good description of the data

Directed flow of **\$\$** meson

 $\phi(s\bar{s})$ is a unique particle as it is a **meson** with mass (1020 MeV) close to baryons

STAR: Phys. Rev. Lett. 120, 062301 (2018)

Quark Matter 2025

Anti-flow of mesons at low p_{T}

- It has been suggested that a Kaon potential is needed to explain kaon behavior in heavy ion collisions at low collision energies
- ♦ Negative dv_1/dy at low p_T for mesons
 → Anti-flow at low energies (3.0 4.5 GeV)
- ♦ JAM Cascade model → with spectators able to reproduce the anti-flow at low $\overrightarrow{}$
 - $p_T \rightarrow Kaon potential is not necessary$

Quark Matter 2025

Motivation: Elliptic flow (v_2)

- At high energies, data follows NCQ scaling, indicating partonic collectivity
- At 3 GeV, anti-flow from shadowing breaks NCQ scaling

Ouark Matter 2025

NCQ scaled Elliptic flow

Change of degree of freedom: $4.5 \rightarrow 7.7 \text{ GeV}$?

STAR

YEARS

Motivation: Triangular flow ($v_3\{\Psi_1\}$)

At high energies, $v_3 \rightarrow$ uncorrelated with the 1st order event plane, contrary to observation at 2.4 GeV by (*HADES*) and at 3 GeV (*STAR*).

Quark Matter 2025

Triangular flow ($v_3\{\Psi_1\}$)

- Increasing collision energy \rightarrow decreasing magnitude of $v_3\{\Psi_1\}$ slope
- ★ JAM model with mean-field (MD2) describes the data → Nuclear potential is essential for the development of $|v_3{\{\Psi_1\}}|$
- Triangularity (ϵ_3) decreases with increasing collision energy \Rightarrow Strong geometric effect \bigvee

Summary

Directed flow (v_1)

- Approximate mass no. scaling is observed in the v₁ slope for light nuclei → Nucleon coalescence
- The v_1 slope of ϕ meson shows similar trends to that of baryons

Elliptic flow (v_2)

- NCQ scaling breaks at 3.0 and 3.2 GeV, and gradually restores from 3.2 to 4.5 GeV
 - Shadowing effect diminishes
 - Dominance of partonic interactions at 4.5 GeV and above

Triangular flow (v_3)

- Magnitude of $d(v_3 \{\Psi_1\})/dy$ decreases with increasing energy and approaches zero at 4.5 GeV
- JAM model with momentum dependent mean-field ($\kappa =$ 380 MeV) describes the data

Thank you for your attention!!