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Application of profile likelihood method for
extraction of AL(η) from multiple datasets
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Abstract
The profile likelihood method (PLM) allows for simultaneous extraction of pairs of physics observables AL(+η),AL(−η) from
quads of yields, Ns, depending on beams polarization directions ’s’ and the STAR detector η-slice. We used Poisson statistics
and multiplied the global likelihoods to combine the data from multiple years. For the most complex case we used 16 yields to
extract 2 parameters of interest while marginalizing over 9 nuisance parameters. The RooStats package from ROOT/CERN
has been extended to account for the constrain on the support of the likelihood function while computing the confidence
interval. The ready to use code examples are included.
This STAR note does NOT contain any physics results for W-boson AL.
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Introduction
This work has been motivated by the desire to combine the
2011 and 2102 STAR data sets to extract the W-boson spin
asymmetry AL(η). Due to low statistics in the 2011 data set
we could not justify use of the Gaussian error propagation.
Instead we used multi-dimensional likelihood, constructed
from many Poisson distributions.

The essence of problem we want to solve is finding the
most probable value (PMV) and the confidence interval (CI)
of the unknown parameter A given a pair of measured yields
N+,N− obeying Poisson distribution, and knowing that the
true relation between those quantities are

N± = N0( 1 ± A ·P) (1)

where N0 > 0 is a free parameter of no interest to us and P is
a known constant , |P|< 1.

At the large statistics limit the p.d.f. of measured yields
N± are well approximated by the Gauss distribution. In such
case can solve eq. 1 for A

A =
1
P

N+−N−
N++N−

(2)

and propagate the statistical errors of N± in to 1 standard
deviation of A, σ(A)

σ(A) =
2
P

√
N+N−

(N++N−)3 (3)

In such case the CI [A−σ ,A+σ ] corresponds to CL=0.678.
Let further assume we repeated the experiment K-times,

measured K pairs of yields N±,k, however each time the con-
stant Pk was different. We want again extract a single, com-
mon value of A based on the combined data from this K
experiments.

At the large statistics limit we can compute Ak,σk for each
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dataset k, then compute weighted average

Â =
K

∑
k=1

Akwk, (4)

wk = σ
−2
k /

K

∑
k=1

σ
−2
k (5)

The procedure described above fails at the low statistic
limit, say for N± of few, when Poisson p.d.f. is not symmetric
around the central value any more. Consequently, the 1-σ CI
for Ak is not centered around MPV. For given CL we have
CI [Alo

k ,A
hi
k ] such that Ak−Alo

k 6= Ahi
k −Ak. This means eq. 5

can’t be applied to compute the relative weights needed in
eq. 4.

The alternative approach to find MPV of A from many,
low statistics experiments is to apply the likelihood method
(LM). Knowing the p.d.f. for each measurement,N±,k, obeys
the Poisson distribution, we construct the likelihood of measur-
ing each pair N±,k given A assuming physics justified model.
Next, multiply the likelihoods from all experiments. Finally,
we find global maximum and CI of A by marginalization of
nuisance parameters.

Section 1 describes application of the profile likelihood
method (PLM) for such simple 2-yield experiment. Section 2
will expand PLM for more realistic case of a series 8-yield
measurements and simultaneous extraction of multiple param-
eters of interest.

1. PLM for 2 spin states and
one-observable

Lets start with a very simple case of the profile likelihood
method applied to extract the single-spin asymmetry (SSA)
from an experiment using a polarized beam hitting an unpo-
larized target and involving one detector.

1.1 Model
Let N± be the measured yields of W-boson events in our
experiment for 2 opposite polarizations of the beam (±). Let
µ± be the expected values of the yields from our model of the
experiment, discussed below.

The W-boson reconstruction algorithm accepts a small
fraction of non-W events (i.e. background) - this impacts the
value of measured SSA and it needs to be corrected for. We
have identified 3 dominant background sources indexed by
the subscript i=Z,E,Q, and W:
’Z’ labels Z→ e+e− events accepted if one of leptons misses
the BEMC or EEMC,
’E’ labels QCD→ jet-jet events for which one jet heads to-
ward non-existent East EMC endcap,
’Q’ labels other subset of QCD events which sometimes
hadronize in such a way that they pass the W reconstruc-
tion algorithm. For completeness, ’W’ labels W-boson events
of interest.

Let fi denote fraction of reconstructed event yield, ni, of a
given type :

fi =
ni

∑ni
; ∑

i
fi = 1 (6)

In general, the SSA for each background process, Ai, may be
different and non-zero which leads to the following model of
spin dependent yields, µ±, for all events accepted by the W
algorithm:

N± → µ± = µW±+µZ±+µE±+µQ± (7)

NW± → µW± = l±N0 fW (1±AW P) (8)
NZ± → µZ± = l±N0 fZ(1±AZP)

NE± → µE± = l±N0 fE(1±AEP)

NQ± → µQ± = l±N0 fQ(1±AQP)

Eq. 7 implies the full model for the spin dependent yields, µ±,
is the sum of all possible processes

µ± = l±N0[ fW + fZ + fE + fQ±
P( fW AW + fZAZ + fEAE + fQAQ) (9)

= l±N0 [1±P(βAW +α)
]

(10)

where

β =
fW

fW + fZ + fE + fQ
(11)

α =
fZAZ + fEAE + fQAQ

fW + fZ + fE + fQ
(12)

In practice the α-term is much smaller than the statistical
uncertainty of the experiment so we will ignore it in this paper.
The final model of spin dependent yields is

µ± = l±N0(1±PβAW ) (13)

The beam polarization, P, is a constant. The relative lumi-
nosities l± are assumed also to be constants. l± depend on
( very large) number of events recorded by the luminosity
monitor for both spin states NLUM±.

l± =
2NLUM±

NLUM++NLUM−
;

1
2
(l++ l−) = 1 (14)

σl± = 1/
√

NLUM++NLUM− are small (15)

1.2 Total likelihood function LΩ

The total likelihood LΩ(AW ,N0,β ) is constructed as the joint
probability using all information we gather from various
sources:

LΩ(AW ,N0,β )≡ LPHY (AW ) ·LSPIN(AW ,N0,β ) ·LBCK(β ) (16)

where:

• AW is the SSA we want to extract from the experiment
(i.e. variable of interest),
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• LPHY (AW ) = H(1− |AW |) : restricts the range of the
physically allowed values of SSA, where H(x) is the
step function,

• N0 and β are nuisance parameters describing the un-
polarized expected yield and unpolarized background,
respectively,

• LSPIN(AW ,N0,β ) = ∏
2
i f (Ni|µi(AW ,N0,β ) is product

of Poisson’s functions f (N|µ), describing probability
of measured yields N given the expected value was µ

from eq. 13,

• LBCK(β ) = g(β − β̂ ,σβ ) is the probability distribution
function for the unpolarized background magnitude,
here parametrized as a gaussian with the mean β̂ and
standard deviation σβ .

The following additional parameters: l±,P , needed to
compute the numerical values of µ (see eq. 13), are assumed
to be constant.
Note, for the practical reasons the ranges of all nuisance pa-
rameters are bracketed to ±10σ around the respective central
values.

1.3 Extracting parameter of interest from LΩ

The following inputs are required to extract the asymmetry of
interest AW

• N± : spin sorted yields from STAR experiment,

• l± : relative luminosities from STAR experiment,

• β̂ ,σβ : describe background p.d.f., based on embed-
ding, simulations, and theory,

• P : beam polarization from RHIC.

With these inputs we can build the 3-dimensional total like-
lihood function LΩ(AW ,N0,β ). To find the central value of
the AW we need to remove the nuisance parameters (N0 and
β ) from the problem. One method to accomplish this is to
marginalize LΩ (or integrate over) the nuisance parameters
to produce the 1-dimensional likelihood vs. the variable of
interest, AW :

Lmarg(AW ) =
∫

dN0
∫

dβ LΩ(AW ,N0,β ). (17)

Another method to treat the nuisance parameters, de-
scribed in the PDG statistics review [1] (specifically Sec.
36.3.2.3) and a longer review from Cowan [2], is the pro-
file likelihood method which we will use and should yield the
same central value and confidence intervals as the marginal-
ization method.

The profile likelihood method consists of two steps: (i)
construction of the profile likelihood Lprof(A

W ) and (ii) ex-
traction of central value and confidence interval for AW .

Figure 1. Definition of confidence interval for the case w/o
constrain on support (a) and with additional constrain (b).

1.3.1 Profile likelihood
Let’s group all nuisance parameters as a vector ν ≡ (N0,β ).
For each value of AW , there exist ν̂(AW ) which maximizes
LΩ(AW , ν̂) defined by eq. 16. The profile likelihood Lprof(A

W )

is defined as

Lprof(A
W ) = LΩ(AW , ν̂) (18)

It is a 1-dimensional likelihood, depending only on AW . Often
one conveniently normalizes the profile likelihood by con-
structing the profile likelihood ratio defined as

λprof(A
W )≡

Lprof(A
W )

LΩ0
, (19)

where LΩ0 is the global maximum of the 3D likelihood in the
[AW ,N0,β ] parameter space.

The central value of AW is the one which maximizes the
profile likelihood Lprof(A

W ), or equivalently minimizes the
negative log-likelihood, − lnLprof.

1.3.2 Confidence interval
For a given confidence level (CL) the confidence interval of
AW is computed as the pair [AW

lo ,A
W
hi ] satisfying the integral∫ AW

hi

AW
lo

Lprof(A) dA =CL ·
∫

support
Lprof(A) dA (20)
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In the absence of constrain on A and for a non-symmetric
p.d.f., as show in fig. 1a), we need to impose additionally

Lprof(A
W
lo) = Lprof(A

W
hi ) (21)

for unambiguous definition of CI.
Presence of the constrain on the support LPHY (AW ) , see

fig. 1b), complicates this picture slightly. For clarity, assume
that the lower bound is closer to the maximum (as in the
figure). In general 2 CI values divide the whole area on 3
parts, labeled x,y,z.∫

x
+
∫

y
+
∫

z
=
∫ +1

−1
Lprof(A) dA (22)

In particular,
∫

x may be zero if chosen CL is too large. In
such case we set AW

lo = −1 (i.e. the lower boundary of the
constrain) and AW

hi is defined by the modified relation∫ AW
hi

−1
Lprof(A) dA =CL ·

∫ +1

−1
Lprof(A) dA (23)

1.4 Numerical example
For numerical computation we will use the RooStats [3] (ex-
tension of CERN root). For educational purposes we have
prepared several ready to use macros placed in the MIT disc
at BNL [4].

The code used to produce fig. 1 is named
spin2Asy constrain.C . Since the original RooStast
did not handled properly the constrain on support, we devel-
oped our own after-burner macro
getIntervGivenConstrSimple.C, used in all sections
of this paper.

2. PLM for 4 spin states and
two-observables

In section 1 we have applied the profile likelihood method to
a simplified case of extraction of one parameter of interest
(AW ) out of a pair of measurements (N+,N−), using a model
(eq. 13) with additional 2 nuisance params (N0,β ) and 3 fixed
params (l±,P). The complexity of real-life problem discussed
in this section, extraction of AL(η) for W-boson measured at
STAR, is much higher.

2.1 Model
In the following we will retain the naming convection of
physical quantities, however we will add additional indexing.
The indexes s,η ,k denote the following:
s spin state of colliding beams, s = [++,+−,−+,−−],
η pseudo-rapidity of 2 detectors, η = [η1,η2] ,
k labels the datasets, k=[1,2,..,K].

Let review previously defined quantities with extended
indexing:

Nsηk are yields measured by STAR for spin state (s), detec-
tor (η), dataset (k),

Figure 2. Definition directions of the beams and signs of the
angles of the detector with respect to polarized beam needed
to define dependence of polarized yields on SSA & DSA in
eqs. 25.

µsηk are yields predicted by the model defined below.

For clarity lets ignore for the moment the dataset index
k. The generic formula for model µsη depends on similar
parameters to eq. 13:

µsη = lsN0
η

[
1 ⊕s P1βη AW

η ′ ⊕s P2βη AW
η” ⊕s P1P2βη ALL

]
(24)

where ⊕s means the sign switch depending on the spin
state ’s’.The index of AW depend on the angle between polar-
ized beam and detector η-bin. The definition of parameters
used in eq. 24 is below :

Ls are relative luminosity corrections,
normalization: ∑s ls = 4, do not depend on the detector,

N0
η are predicted spin-average yields, nuisance params, change

with the detector

P1,P2 are beam polarization magnitudes,

AW
η ′ ,A

W
η ′′ are SSAs for a pair of symmetric η-bins with respect
to the polarized beam; those 2 are parameters of interest,

βη are unpolarized corrections to AW
η , depend on detector

angle, nuisance parameter,

ALL is DSA nuisance param, it has no ±η detector depen-
dence.

2.1.1 Model for 8 yields
In total there are 8 different possibilities for the index sη

defined in the full model (eq. 24). Below we will write them
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Figure 3. Illustration of applying the physics constrain, LPHY , on the support of the total likelihood for eq. 16 . a) no
constrains, b) after constrains are applied the support has been reduced.

explicitly

µ++,1 = l++N0
1 [ 1 +P1β1AW

1 +P2β1AW
2 +P1P2β1ALL ] (25)

µ+−,1 = l+−N0
1 [ 1 +P1β1AW

1 −P2β1AW
2 −P1P2β1ALL ]

µ−+,1 = l++N0
1 [ 1 −P1β1AW

1 +P2β1AW
2 −P1P2β1ALL ]

µ−−,1 = l+−N0
1 [ 1 −P1β1AW

1 −P2β1AW
2 +P1P2β1ALL ]

µ++,2 = l++N0
1 [ 1 +P1β2AW

2 +P2β2AW
1 +P1P2β2ALL ]

µ+−,2 = l+−N0
1 [ 1 +P1β2AW

2 −P2β2AW
1 −P1P2β2ALL ]

µ−+,2 = l++N0
1 [ 1 −P1β2AW

2 +P2β2AW
1 −P1P2β2ALL ]

µ−−,2 = l+−N0
1 [ 1 −P1β2AW

2 −P2β2AW
1 +P1P2β2ALL ]

From the mathematical perspective, the model of µsη

defined by eqs. 25 does not need any justification. However,
if you are a curious physicist fig. 2, defining directions of both
beams and signs of the angles of the detector with respect to
polarized beam, may be helpful.

2.1.2 Model for 4 yields
In certain cases we only have a single detector η . Then, we
need only 4 equations for the model:

µs = lsN0
[

1 ⊕s P1βAW
η ′ ⊕s P2βAW

η ′′ ⊕s P1P2βALL
]

(26)

and,

µ++ = l++N0[ 1 +P1βAW
1 +P2βAW

2 +P1P2βALL ] (27)
µ+− = l+−N0[ 1 +P1βAW

1 −P2βAW
2 −P1P2βALL ]

µ−+ = l++N0[ 1 −P1βAW
1 +P2βAW

2 −P1P2βALL ]

µ−− = l+−N0[ 1 −P1βAW
1 −P2βAW

2 +P1P2βALL ]

2.2 Total likelihood
The total likelihood for one dataset consisting of 8 measured
yields Nsη is a product of all p.d.f.s, in analogy to eq. 16,

LΩ8(AW
1 ,AW

2 ,ν8) =

8

∏
s,η

f (Nsη |µsη)
2

∏
η

g(βη)
2

∏
η ′

H(1−|AW
η ′ |) H(1−|ALL|)

(28)

where ν8 represent 5 nuisance parameters ν8 = [N0
η ,βη ,ALL].

The functions f (...),g(...),H(...) were previously defined in
the section 1.2. Fig. 3 illustrates the impact of the constrains,
H(x), on the allowed parameter space of the total likelihood
function.

Finally, lets allow for multiple datasets and restore the
index ’k’. For 2 datasets, k=1,2, we measure total of 16
yields Nsηk and need to almost double the number of nuisance
parameters for the total likelihood. This is the final formula:

LΩ16(AW
1 ,AW

2 ,ν16) =

16

∏
s,η ,k

f (Nsηk|µsηk)
4

∏
η ,k

g(βηk)
2

∏
η ′

H(1−|AW
η ′ |) H(1−|ALL|)

(29)

where ν16 represent 9 nuisance parameters [N0
ηk,βηk,ALL].

Similarly, for the two dataset consisting of only 4 mea-
sured yields Ns for one pseudo-rapidity of the detector the
total likelihood is:

LΩ8(AW
1 ,AW

2 ,ν8) =

8

∏
s,k

f (Nsk|µsk)
2

∏
k

g(βk)
2

∏
k

H(1−|AW
η ′ |) H(1−|ALL|)

(30)
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2.3 RooStats implementation
In section 1.4 RooStats [3] was mentioned. It is a powerful
tool to deal with the profile likelihood of multiple parameters.
If we define all the models and likelihood PDFs, RooStats will
do all the other works. To call RooStats package, 5.28.00 or
higher version of ROOT is required. An example of solution
of problem defined by eqs. 29 and eq. 30 are available at [4].

2.3.1 RooWorkspace
The RooWorkspace is a persistant container for RooFit projects.
A workspace can contain and own variables, p.d.f.s, functions
and datasets. All objects that live in the workspace are owned
by the workspace. The import() method enforces consistency
of objects upon insertion into the workspace (e.g. no duplicate
object with the same name are allowed) and makes sure all
objects in the workspace are connected to each other.
The code creatPDF.C is an example about how to define
a RooWorkspace which contain all the variables, p.d.f.s and
datasets will be used in our analysis.

> root -l creatPDF.C

run this code will create the RooWorkspace and print it out.

2.3.2 ProfileLikelihoodCalculator
In individual calculation, all the relative variables should
be initialized with the experiment parameters. The function
RooStats::ProfilelikelihoodCalculator will do the main com-
putation of profile likelihood.

ProfileLikelihoodCalculator plC(*dataY,

*modelConfig);

where the dataY is RooDataSet which contains all the ob-
servables (namely spin sorted yields in W AL analysis), and
modelCofig is RooStats::ModelConfig which contain the full
likelihood function (eg. eq. 29 and eq. 30) and the definition
of parameters of interest(AW ) and the model (µ).

2.3.3 Confidence Interval
We can’t use directly the output ProfilelikelihoodCalculator
since it does not account correctly for the reduced support
due to constraints. We call our ”after-burner” code, discussed
in section 1.3.2. Taking out the profile likelihood ratio from
the ProfileLikelihoodCalculator, we can get the central value
and the confidence interval with given confidence level. The
code getIntervalGivenConstrain.C is an example
to get the result from a profile likelihood ratio comes from
ProfilelikelihoodCalculator.

2.4 Numerical results
To allow cross check by the reader we will report few results
for synthetic data.

2.4.1 AW for 2x8-yields
Lets assume the following 16 yields, Nsηd , for the pair of 2
detectors, for 2 years:
N++,1,1=18, N+−,1,1=24, N−+,1,1=27, N−−,1,1=21

N++,2,1=25, N+−,2,1=14, N−+,2,1=33, N−−,2,1=43
N++,1,2=87, N+−,1,2=184, N−+,1,2=161, N−−,1,2=226
N++,2,2=104, N+−,2,2=186, N−+,2,2=182, N−−,2,2=269
Other parameters are:
Ls,1= { 1.0180, 0.9891, 0.9926, 1.0002 }
Ls,2= { 0.9950, 1.0077, 0.9933, 1.0040 }
P1,1=0.49, P2,1=0.49; P1,2=0.55, P2,2=0.57
βη ,1 = { 0.976, 0.971 }; βη ,2 = { 0.967,0.962 }

AW Profile likelihood, CL=%68.27 Gauss method*
mpv AW AW

lo AW
hi δAW AW σAW

AW
1 -0.345 -0.391 -0.299 0.046 -0.345 0.046

AW
2 -0.424 -0.470 -0.378 0.046 -0.425 0.045

Table 1. AW
1 ,AW

2 from RooStats and comparison with the
Gxaussian method for 16-yields, input discussed in
section. 2.4.1.
*Gauss method: calculate AW for each detector eta bin of
each year dataset and then average them with error wight.

Implementation of the RooStats based code for the like-
lihood function of 16 yields (eq. 29) was applied on this
numerical example. We got the most probable values and
confidence intervals with %68 confidence level of AW

1 and AW
2

simultaneously.
AW

1 = -0.345, with confidence interval [-0.391,-0.299]
AW

2 = -0.424, with confidence interval [-0.469,-0.378]

Table 1 lists results of AW
1 AW

2 and comparison with Gaus-
sian method. Results from both methods are consistent . To
reproduce execute:

> root -l rdAprofF.C’(0,2,"AL")’

2.4.2 AW for 2x4-yields
To test the case of one detector we assumed:
N++,1=3, N+−,1=2, N−+,1=1, N−−,1=3
N++,2=16, N+−,2=15, N−+,2=16, N−−,2=10

Other parameters as in section 2.4.1, except
β1 = 0.991, β2 = 0.962 .

For CL of %68we got:
AW

1 = 0.167, with confidence interval [-0.065,0.397]
AW

2 = 0.181, with confidence interval [-0.045,0.403]

AW Profile likelihood , CL=%68.27 gauss method
mpv AW AW

lo AW
hi δAW AW σAW

AW
1 0.167 -0.065 0.399 0.232 0.169 0.234

AW
2 0.181 -0.045 0.403 0.224 0.179 0.224

Table 2. AW
1 ,AW

2 from RooStats and comparison with the
Gaussian method for 8-yields, input discussed in
section. 2.4.2.
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Table 2 lists results of AW
1 AW

2 and comparison with Gaus-
sian method. As expected, result also looks reasonable. Due
to the low statistics, the difference between two method is
more significant. To reproduce execute:

> root -l rdAprofF.C’(1,7,"AL")’

2.5 ALL extraction
Previous subsections are focused on AW , the single spin asym-
metry. For ALL, the double spin asymmetry, the case is similar.
By setting AW s as nuisance parameters and setting ALL as the
parameter of interest, we can extract the most probable value
and confidence interval of ALL.

We used the sample yields used in section 2.4.1 and 2.4.2
to get the numerical results of ALL. We got the most probable
value and confidence interval with 68% confidence level for
2x8-yields and 2x4-yields respectively.

> root -l rdAprofF.C’(0,2,"ALL")’

ALL = -0.050, with confidence interval [ -0.134, 0.035].

> root -l rdAprofF.C’(1,7,"ALL")’

ALL = -0.155, with confidence interval [ -0.556, 0.251]

2.6 Conclusion
Based on the knowledge from previous section, this method
can be applied to extract W AL from STAR data from multiple
dataset. The Barrel part of STAR detector can be divided into
pairs of symmetric pseudo-rapidity bins and eq 29 is aplicable.
Since there is only one endcap at STAR the eq. 30 should be
applied in this case. Applying the model and likelihood de-
scribed in section 2.1 and 2.2, we can get a W AL dependence
vs. pseudo-rapidity in full η range of STAR detector.
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