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Application of profile likelihood method for
extraction of AL(η) from multiple datasets
Jan Balewski 1*, Justin Stevens 1, Jinlong Zhang2

Abstract
The profile likelihood method (PLM) allows for simultaneous extraction of pairs of physics observables AL(+η),AL(−η) from
quads of yields, Ns, depending on beams polarization directions ’s’ and the STAR detector η-slice. We used Poisson statistics
and multiplied the global likelihoods to combine the data from multiple years. For the most complex case we used 16 yields to
extract 2 parameters of interest while marginalizing over 9 nuisance parameters. The RooStats package from ROOT/CERN
has been extended to account for the constrain on the support of the likelihood function while computing the confidence
interval. The ready to use code examples are included.
This STAR note does NOT contain any physics results for W-boson AL.
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Introduction
This work has been motivated by the desire to combine the
2011 and 2102 STAR data sets to extract the W-boson spin
asymmetry AL(η). Due to the low statistics in the 2011 dataset
we could not justify the use of Gaussian error propagation.
Instead we have used a multi-dimensional likelihood, con-
structed from many Poisson distributions. For consistency,

the same method will be used for extraction of the double spin
asymmetry ALL .

The essence of the problem which we need to address is
finding the most probable value (MPV) and the confidence
interval (CI) of an unknown parameter A, given a pair of
measured yields N+,N− obeying a Poisson distribution, and
knowing that the true relation between those quantities are

N± = N0( 1 ± A ·P) (1)

where N0 > 0 is a free parameter of no interest to us and P is
a known constant, |P|< 1.

In the limit of large statistics the p.d.f. of measured yields
N± are well approximated by the Gaussian distribution. One
can then solve Eqn. 1 for A

A =
1
P

N+−N−
N++N−

(2)

and propagate the statistical errors of N± into one standard
deviation of A, σ(A)

σ(A) =
2
P

√
N+N−

(N++N−)3 (3)

In such a case the CI [A−σ ,A+σ ] corresponds to CL=0.683.
Let’s further assume we repeated the experiment K-times,

measuring K pairs of yields N±,k. However, each time the
constant Pk was different. We want to again extract a single,
common value of A based on the combined data from these K
experiments.

In the limit of large statistics we can compute Ak,σk for
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each dataset k, then compute weighted average

Â =
K

∑
k=1

Akwk, (4)

wk = σ
−2
k /

K

∑
k=1

σ
−2
k (5)

The procedure described above fails in the low statistic
limit, say for N± of few, when the Poisson p.d.f. is not sym-
metric around the central value any more. Consequently, the
1-σ CI for Ak is not centered around the MPV. For a given
CL we have CI [Alo

k ,A
hi
k ] such that Ak−Alo

k 6= Ahi
k −Ak. This

means Eqn. 5 can’t be applied to compute the relative weights
needed in Eqn. 4.

The alternative approach to finding the MPV of A
from many, low statistics experiments is to apply the like-
lihood method (LM). Knowing the p.d.f. for each measure-
ment, N±,k, obeys the Poisson distribution, we construct the
likelihood of measuring each pair N±,k, given A, assuming a
physics justified model. Then, multiply the likelihoods from
all experiments. Finally, find the global maximum and CI of
A by marginalization of nuisance parameters.

Section 1 describes the application of the profile likelihood
method (PLM) for a simple 2-yield experiment. Section 2
will expand the PLM for a more realistic case of a series 8-
yield measurements and simultaneous extraction of multiple
parameters of interest.

1. PLM for 2 spin states and
one-observable

Let’s start with a very simple case of the profile likelihood
method applied to extract the single-spin asymmetry (SSA)
from an experiment using a polarized beam hitting an unpo-
larized target and involving one detector.

1.1 Model
Let N± be the measured yields of W-boson events in our
experiment for two opposite polarizations of the beam (±).
Let µ± be the expected values of the yields from our model
of the experiment, discussed below.

The W-boson reconstruction algorithm accepts a small
fraction of non-W events (i.e. background) - this impacts the
value of the measured SSA and needs to be corrected for. We
have identified 3 dominant background sources indexed by
the subscript i=Z,E,Q, and W:
’Z’ labels Z→ e+e− events accepted if one of leptons misses
the BEMC or EEMC,
’E’ labels QCD→ jet-jet events for which one jet heads to-
ward the non-existent East EMC endcap,
’Q’ labels other subset of QCD events which sometimes
hadronize in such a way that they pass the W reconstruc-
tion algorithm. For completeness, ’W’ labels W-boson events
of interest.

Let fi denote the fraction of reconstructed event yield, ni,
of a given type :

fi =
ni

∑ni
; ∑

i
fi = 1 (6)

In general, the SSA for each background process, Ai, may be
different and non-zero which leads to the following model of
spin dependent yields, µ±, for all events accepted by the W
algorithm:

N± → µ± = µW±+µZ±+µE±+µQ± (7)

NW± → µW± = l±N0 fW (1±AW P) (8)
NZ± → µZ± = l±N0 fZ(1±AZP)

NE± → µE± = l±N0 fE(1±AEP)

NQ± → µQ± = l±N0 fQ(1±AQP)

Eqn. 7 implies the full model for the spin dependent yields,
µ±, is the sum of all possible processes

µ± = l±N0[ fW + fZ + fE + fQ±
P( fW AW + fZAZ + fEAE + fQAQ) (9)

= l±N0 [1±P(βAW +α)
]

(10)

where

β =
fW

fW + fZ + fE + fQ
(11)

α =
fZAZ + fEAE + fQAQ

fW + fZ + fE + fQ
(12)

In practice the α-term is much smaller than the statistical
uncertainty of the experiment so we will ignore it in this paper.
The final model of spin dependent yields is

µ± = l±N0(1±PβAW ) (13)

The beam polarization, P, is a constant. The relative lumi-
nosities l± are also assumed to be constants. l± depend on
the (very large) number of events recorded by the luminosity
monitor for both spin states NLUM±.

l± =
2NLUM±

NLUM++NLUM−
;

1
2
(l++ l−) = 1 (14)

σl± = 1/
√

NLUM++NLUM− are small (15)

1.2 Total likelihood function LΩ

The total likelihood LΩ(AW ,N0,β ) is constructed as the joint
probability using all the information we gather from various
sources:

LΩ(AW ,N0,β )≡ LPHY (AW ) ·LSPIN(AW ,N0,β ) ·LBCK(β ) (16)

where:

• AW is the SSA we want to extract from the experiment
(i.e. the variable of interest),
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• LPHY (AW ) = H(1− |AW |) : restricts the range of the
physically allowed values of SSA, where H(x) is the
step function,

• N0 and β are nuisance parameters describing the un-
polarized expected yield and unpolarized background,
respectively,

• LSPIN(AW ,N0,β ) = ∏
2
i f (Ni|µi(AW ,N0,β ) is product

of Poisson distributions f (N|µ), describing the proba-
bility of measuring N events given the expected value
was µ from Eqn. 13,

• LBCK(β ) = g(β − β̂ ,σβ ) is the probability distribution
function for the unpolarized background magnitude,
here parametrized as a gaussian with a mean β̂ and
standard deviation σβ .

The following additional parameters: l±,P , needed to
compute the numerical values of µ (see Eqn. 13), are assumed
to be constant.
Note: for the practical reasons the ranges of all nuisance pa-
rameters are bracketed to ±10σ around the respective central
values.

1.3 Extracting parameter of interest from LΩ

The following inputs are required to extract the asymmetry of
interest AW

• N± : spin sorted yields from STAR experiment,

• l± : relative luminosities from STAR experiment,

• β̂ ,σβ : description of background p.d.f., based on em-
bedding, simulations, and theory,

• P : beam polarization from RHIC.

With these inputs we can build the 3-dimensional total like-
lihood function LΩ(AW ,N0,β ). To find the central value of
the AW we need to remove the nuisance parameters (N0 and
β ) from the problem. One method to accomplish this is to
marginalize LΩ (or integrate over) the nuisance parameters
to produce the 1-dimensional likelihood vs. the variable of
interest, AW :

Lmarg(AW ) =
∫

dN0
∫

dβ LΩ(AW ,N0,β ). (17)

Another method to treat the nuisance parameters, de-
scribed in the PDG statistics review [1] (specifically Sec.
36.3.2.3) and a longer review from Cowan [2], is the pro-
file likelihood method which we will use and should yield the
same central value and confidence intervals as the marginal-
ization method.

The profile likelihood method consists of two steps: (i)
construction of the profile likelihood Lprof(A

W ) and (ii) ex-
traction of the central value and confidence interval for AW .

Figure 1. Definition of confidence interval for the case w/o
constrain on support (a) and with additional constrain (b).

1.3.1 Profile likelihood
Let’s group all nuisance parameters as a vector ν ≡ (N0,β ).
For each value of AW , there exist ν̂(AW ) which maximizes
LΩ(AW , ν̂) defined by Eqn. 16. The profile likelihood Lprof(A

W )

is defined as

Lprof(A
W ) = LΩ(AW , ν̂) (18)

It is a 1-dimensional likelihood, depending only on AW . Often
one conveniently normalizes the profile likelihood by con-
structing the profile likelihood ratio defined as

λprof(A
W )≡

Lprof(A
W )

LΩ0
, (19)

where LΩ0 is the global maximum of the 3D likelihood in the
[AW ,N0,β ] parameter space.

The central value of AW is the one which maximizes the
profile likelihood Lprof(A

W ), or equivalently minimizes the
negative log-likelihood, − lnLprof.

1.3.2 Confidence interval
For a given confidence level (CL) the confidence interval of
AW is computed as the pair [AW

lo ,A
W
hi ] satisfying the integral∫ AW

hi

AW
lo

Lprof(A) dA =CL ·
∫

support
Lprof(A) dA (20)
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In the absence of constrain on A and for a non-symmetric
p.d.f., as show in fig. 1a), we need to impose additionally

Lprof(A
W
lo) = Lprof(A

W
hi ) (21)

for unambiguous definition of CI.
The presence of the constrain on the support LPHY (AW ) ,

see Fig. 1b), complicates this picture slightly. For clarity, let’s
assume that the lower bound is closer to the maximum (as in
the figure). In general two CI values divide the whole area on
3 parts, labeled x,y,z.∫

x
+
∫

y
+
∫

z
=
∫ +1

−1
Lprof(A) dA (22)

In particular,
∫

x may be zero if chosen CL is too large. In
such case we set AW

lo = −1 (i.e. the lower boundary of the
constrain) and AW

hi is defined by the modified relation∫ AW
hi

−1
Lprof(A) dA =CL ·

∫ +1

−1
Lprof(A) dA (23)

1.4 Numerical example
For numerical computation we will use the RooStats [3] (ex-
tension of CERN root). For educational purposes we have
prepared several ready to use macros placed in the MIT disc
at BNL [4].

The code used to produce Fig. 1 is named
spin2Asy constrain.C . Since the original RooStast
did not properly handle the constraint on the asymmetry to be
within the physically allowed range, we developed our own
after-burner macro
getIntervGivenConstrSimple.C, used in all sections
of this paper.

2. PLM for 4 spin states and
two-observables

In section 1 we have applied the profile likelihood method
to a simplified case of extracting one parameter of interest
(AW ) out of a pair of measurements (N+,N−), using a model
(Eqn. 13) with two additional nuisance parameters (N0,β )
and 3 fixed parameters (l±,P). The complexity of the real
world problem discussed in this section, extraction of AL(η)
for W-boson measured at STAR, is much larger.

2.1 Model
In the following we will retain the naming convection of
physical quantities, however we will add additional indexing.
The indexes s,η ,k denote the following:
s spin state of colliding beams, s = [++,+−,−+,−−],
η pseudorapidity of 2 detector regions, η = [η1,η2] ,
k labels the datasets, k=[1,2,..,K].

Let’s review the previously defined quantities with ex-
tended indexing:

Nsηk are yields measured by STAR for spin state (s), detec-
tor (η), dataset (k),

Figure 2. Definition of beam direction and signs of the
angles in the detector with respect to polarized beam needed
to define dependence of polarized yields on SSA & DSA in
eqs. 25.

µsηk are yields predicted by the model defined below.

For clarity let’s ignore, for the moment, the dataset index
k. The generic formula for the model µsη depends on similar
parameters as Eqn. 13:

µsη = lsN0
η

[
1 ⊕s P1βη AW

η ′ ⊕s P2βη AW
η” ⊕s P1P2βη ALL

]
(24)

where ⊕s means the sign switch depending on the spin state
’s’. The index of AW depends on the angle between polarized
beam and detector η-bin. The definitions of the parameters
used in Eqn. 24 are below:

Ls are the relative luminosity corrections,
normalization: ∑s ls = 4, do not depend on the detector,

N0
η are the predicted spin-average yields, nuisance params,

change with the detector

P1,P2 are the beam polarization magnitudes,

AW
η ′ ,A

W
η ′′ are the SSAs for a pair of symmetric η-bins with
respect to the polarized beam; which are parameters of
interest,

βη are the unpolarized corrections to AW
η , depend on detector

angle, nuisance parameter,

ALL is the DSA nuisance param, which has no ±η detector
dependence.

2.1.1 Model for 8 yields
In total there are 8 different possibilities for the index sη

defined in the full model (Eqn. 24). Below we will write them
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Figure 3. Illustration of applying the physics constrain, LPHY , on the support of the total likelihood for Eqn. 16 . a) no
constrains, b) after constrains are applied the support has been reduced.

explicitly

µ++,1 = l++N0
1 [ 1 +P1β1AW

1 +P2β1AW
2 +P1P2β1ALL ] (25)

µ+−,1 = l+−N0
1 [ 1 +P1β1AW

1 −P2β1AW
2 −P1P2β1ALL ]

µ−+,1 = l++N0
1 [ 1 −P1β1AW

1 +P2β1AW
2 −P1P2β1ALL ]

µ−−,1 = l+−N0
1 [ 1 −P1β1AW

1 −P2β1AW
2 +P1P2β1ALL ]

µ++,2 = l++N0
1 [ 1 +P1β2AW

2 +P2β2AW
1 +P1P2β2ALL ]

µ+−,2 = l+−N0
1 [ 1 +P1β2AW

2 −P2β2AW
1 −P1P2β2ALL ]

µ−+,2 = l++N0
1 [ 1 −P1β2AW

2 +P2β2AW
1 −P1P2β2ALL ]

µ−−,2 = l+−N0
1 [ 1 −P1β2AW

2 −P2β2AW
1 +P1P2β2ALL ]

From the mathematical perspective, the model of µsη

defined by Eqns. 25 does not need any justification. However,
if you are a curious physicist, Fig. 2 defines directions of both
beams and signs of the angles of the detector with respect to
polarized beam.

2.1.2 Model for 4 yields
In certain cases we only have a single detector η . Then, we
need only 4 equations for the model:

µs = lsN0
[

1 ⊕s P1βAW
η ′ ⊕s P2βAW

η ′′ ⊕s P1P2βALL
]

(26)

and,

µ++ = l++N0[ 1 +P1βAW
1 +P2βAW

2 +P1P2βALL ] (27)
µ+− = l+−N0[ 1 +P1βAW

1 −P2βAW
2 −P1P2βALL ]

µ−+ = l++N0[ 1 −P1βAW
1 +P2βAW

2 −P1P2βALL ]

µ−− = l+−N0[ 1 −P1βAW
1 −P2βAW

2 +P1P2βALL ]

2.2 Total likelihood
The total likelihood for one dataset consisting of 8 measured
yields Nsη is a product of all p.d.f.s, in analogy to Eqn. 16,

LΩ8(AW
1 ,AW

2 ,ν8) =

8

∏
s,η

f (Nsη |µsη)
2

∏
η

g(βη)
2

∏
η ′

H(1−|AW
η ′ |) H(1−|ALL|)

(28)

where ν8 represent 5 nuisance parameters ν8 = [N0
η ,βη ,ALL].

The functions f (...),g(...),H(...) were previously defined in
the Sec. 1.2. Fig. 3 illustrates the impact of the constrains,
H(x), on the allowed parameter space of the total likelihood
function.

Finally, lets allow for multiple datasets and restore the
index ’k’. For 2 datasets, k=1,2, we measure a total of 16
yields Nsηk and need to almost double the number of nuisance
parameters for the total likelihood. This is the final formula:

LΩ16(AW
1 ,AW

2 ,ν16) =

16

∏
s,η ,k

f (Nsηk|µsηk)
4

∏
η ,k

g(βηk)
2

∏
η ′

H(1−|AW
η ′ |) H(1−|ALL|)

(29)

where ν16 represent 9 nuisance parameters [N0
ηk,βηk,ALL].

Similarly, for the two dataset consisting of only 4 mea-
sured yields Ns for one pseudorapidity bin of the detector the
total likelihood is:

LΩ8(AW
1 ,AW

2 ,ν8) =

8

∏
s,k

f (Nsk|µsk)
2

∏
k

g(βk)
2

∏
k

H(1−|AW
η ′ |) H(1−|ALL|)

(30)
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2.3 RooStats implementation
In section 1.4 RooStats [3] was mentioned. It is a powerful
tool to deal with the profile likelihood of multiple parameters,
among many other things. If we define all the models and
likelihood PDFs, RooStats will do all the rest of the work for
us. To call the RooStats package, 5.28.00 or higher version
of ROOT is required. An example of the solution to problem
defined by Eqns. 29 and 30 is available at [4].

2.3.1 RooWorkspace
The RooWorkspace is a persistent container for RooFit projects.
A workspace can contain and own variables, p.d.f.s, functions
and datasets. All objects that live in the workspace are owned
by the workspace. The import() method enforces consistency
of objects upon insertion into the workspace (e.g. no duplicate
object with the same name are allowed) and makes sure all
objects in the workspace are connected to each other.
The code creatPDF.C is an example for how to define a
RooWorkspace which contains all the variables, p.d.f.s and
datasets that will be used in our analysis.

> root -l creatPDF.C

Executing this code will create the RooWorkspace and print it
out.

2.3.2 ProfileLikelihoodCalculator
In the calculation, all the relative variables should be initial-
ized with the experimental parameters. The function RooSt-
ats::ProfilelikelihoodCalculator will do the main computation
of the profile likelihood.

ProfileLikelihoodCalculator plC(*dataY,

*modelConfig);

where the dataY is RooDataSet which contains all the observ-
ables (namely, the spin sorted yields for the W AL analysis),
and modelCofig is a RooStats::ModelConfig which contains
the full likelihood function (e.g. Eqn. 29 and Eqn. 30) and the
definition of parameters of interest (AW ) for the model (µ).

2.3.3 Confidence Interval
We can’t use the output ProfilelikelihoodCalculator directly
since it does not account correctly for the reduced support
due to constraints. We instead call our ”after-burner” code,
discussed in section 1.3.2. Taking out the profile likelihood
ratio from the ProfileLikelihoodCalculator, we can get the
central value and the confidence interval with given confidence
level. The code getIntervalGivenConstrain.C is
an example to get the result from a profile likelihood ratio that
comes from ProfilelikelihoodCalculator.

2.4 Numerical results
To allow a cross check by the reader we will report a few
results for synthetic data.

2.4.1 AW for 2x8-yields
Lets assume the following 16 yields, Nsηd , for the pair of 2
detectors, for 2 years:
N++,1,1=18, N+−,1,1=24, N−+,1,1=27, N−−,1,1=21
N++,2,1=25, N+−,2,1=14, N−+,2,1=33, N−−,2,1=43
N++,1,2=87, N+−,1,2=184, N−+,1,2=161, N−−,1,2=226
N++,2,2=104, N+−,2,2=186, N−+,2,2=182, N−−,2,2=269
Other parameters are:
Ls,1= { 1.0180, 0.9891, 0.9926, 1.0002 }
Ls,2= { 0.9950, 1.0077, 0.9933, 1.0040 }
P1,1=0.49, P2,1=0.49; P1,2=0.55, P2,2=0.57
βη ,1 = { 0.976, 0.971 }; βη ,2 = { 0.967,0.962 }

AW Profile likelihood, CL=68.3% Gaussian method*
mpv AW AW

lo AW
hi δAW AW σAW

AW
1 -0.345 -0.391 -0.299 0.046 -0.345 0.046

AW
2 -0.424 -0.470 -0.378 0.046 -0.425 0.045

Table 1. AW
1 ,AW

2 from RooStats and a comparison with the
Gaussian method for 16-yields, input discussed in Sec. 2.4.1.
*Gaussian method: calculate AW for each detector eta bin of
each year dataset and then average them with error weight
defined by Gaussian error propagation.

Implementation of the RooStats based code for the like-
lihood function of 16 yields (Eqn. 29) was applied on this
numerical example. The most probable values and confidence
intervals for a 68% confidence level of AW

1 and AW
2 were ob-

tained simultaneously.
AW

1 = -0.345, with confidence interval [-0.391,-0.299]
AW

2 = -0.424, with confidence interval [-0.469,-0.378]

Table 1 lists results of AW
1 AW

2 and a comparison with the
Gaussian method. Results from both methods are consistent .
To reproduce execute:

> root -l rdAprofF.C’(0,2,"AL")’

2.4.2 AW for 2x4-yields
To test the case of one detector we assumed:
N++,1=3, N+−,1=2, N−+,1=1, N−−,1=3
N++,2=16, N+−,2=15, N−+,2=16, N−−,2=10

Other parameters as in section 2.4.1, except
β1 = 0.991, β2 = 0.962 .

For CL of 68% we got:
AW

1 = 0.167, with confidence interval [-0.065,0.399]
AW

2 = 0.181, with confidence interval [-0.046,0.403]

Table 2 lists results of AW
1 , AW

2 and a comparison with the
Gaussian method. As expected, the result also compare well
for this case. Due to the low statistics, the difference between
two methods is more significant. To reproduce execute:

> root -l rdAprofF.C’(1,7,"AL")’
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AW Profile likelihood , CL=68.3% gauss method
mpv AW AW

lo AW
hi δAW AW σAW

AW
1 0.167 -0.065 0.399 0.232 0.169 0.234

AW
2 0.182 -0.046 0.403 0.224 0.179 0.224

Table 2. AW
1 ,AW

2 from RooStats and comparison with the
Gaussian method for 8-yields, input discussed in Sec. 2.4.2.

2.5 AW from single symmetry η-bin
For the case of single symmetry η-bin, it is similar with the
model for 4 yields discribed in Sec. 2.1.2. The only difference
is AW

η ′ = AW
η ′′ , namely, the index η is skipped. So, the parame-

ters of interest are reduced to only one, AW . To test this case
we assumed:
N++,1=64, N+−,1=68, N−+,1=89, N−−,1=105
N++,2=339, N+−,2=586, N−+,2=559, N−−,2=818

Other parameters as in section 2.4.1, except
β1 = 0.950, β2 = 0.990 .

For CL of 68% we got:
AW = -0.363, with confidence interval [-0.398,0.348]

We can reproduce the result by executing below line,

> root -l rdAprofF.C’(0,8,"AL")’

For the Z AL calculation, we can also use this method by
changing the input yields.

2.6 ALL extraction
Previous subsections are focused on AW , the single spin asym-
metry. For ALL, the double spin asymmetry, the case is similar.
By setting AW s as a nuisance parameters and setting ALL as
the parameter of interest, we can extract the most probable
value and confidence interval of ALL.

We used the sample yields from Sec. 2.4.1 and 2.4.2 to
obtain the numerical results of ALL. The most probable value
and confidence interval with 68% confidence level for 2x8-
yields and 2x4-yields respectively are shown below.

> root -l rdAprofF.C’(0,2,"ALL")’

ALL = -0.050, with confidence interval [ -0.134, 0.035].

> root -l rdAprofF.C’(1,7,"ALL")’

ALL = -0.155, with confidence interval [ -0.556, 0.251]

2.7 Conclusion
Based on the knowledge from previous section, this method
can be applied to extract W AL from STAR data from multiple
dataset. The Barrel part of STAR detector can be divided
into pairs of symmetric pseudorapidity bins, where Eqn 29
applies. Since there is only one endcap at STAR the Eqn. 30
should be applied for this case. Applying the model and
likelihood described in Sec. 2.1 and 2.2, we can obtain the

W AL pseudorapidity dependence in the full η range of the
STAR detector. The W ALL and Z AL also can be etracted via
this method.
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