

Fluctuation measurements at RHIC-STAR

Fan Si (司凡)

(for the STAR Collaboration)

University of Science and Technology of China

University of Tsukuba

Outline

Introduction

Results on fluctuations from STAR Search for critical point Search for crossover

- Other motivations
- •Future prospects

• Summary

Introduction: QCD phase structure

- Crossover at μ_B = 0
 Predicted by lattice QCD
 T = (156 ± 1.5) MeV
- 1st-order phase transition
 - At higher $\mu_{\rm B}$
 - Predicted by QCD-based model
- QCD critical point?
 - Existence and possible location
- Experimental scan of QCD phase diagram • By varying collision energy $\sqrt{s_{NN}}$

Introduction: experimental observables

• Higher-order cumulants of net-particle multiplicities • Proxies for conserved charges (B, Q, S)• $\mu_r = \langle (N - \langle N \rangle)^r \rangle$: rth-order central moment $= VT^3\chi_1^q$ • $C_1 = M = \langle N \rangle$ $= VT^3\chi_2^q \sim \xi^2$ $\circ C_2 = \sigma^2 = \mu_2$ $= VT^3\chi_3^q \sim \xi^{4.5}$ • $C_3 = S\sigma^3 = \mu_3$ $= VT^3 \chi^q_{\scriptscriptstyle A} \sim \xi^7$ • $C_4 = \kappa \sigma^4 = \mu_4 - 3\mu_2^2$ $= VT^3\chi^q_{\tt s} \sim \xi^{9.5}$ $\circ C_5 = \mu_5 - 10\mu_3\mu_2$ • $C_6 = \mu_6 - 15\mu_4\mu_2 - 10\mu_3^2 + 30\mu_2^3 = VT^3\chi_6^q \sim \xi^{12}$ • Sensitive to correlation length (ξ)

• Directly connected to susceptibilities (χ_r^q , q = B, Q, S)

$$\circ \frac{C_3^q}{C_2^q} = S\sigma = \frac{\chi_3^q}{\chi_2^q}, \frac{C_4^q}{C_2^q} = \kappa\sigma^2 = \frac{\chi_4^q}{\chi_2^q}$$

Gaussian: $C_r = 0$ (r > 2) Skellam (Poisson – Poisson): $C_3/C_1 = C_4/C_2 = C_5/C_1 = C_6/C_2 = 1$

Introduction: predicted signals

RHIC Beam Energy Scan program

• To map the QCD phase diagram: wide $\mu_{\rm B}$ range (25 – 750 MeV), high statistics

$\sqrt{s_{NN}}$ (GeV)	# Events	Year 20xx (BES-I/ II)	μ _B (MeV)
200	238M/ 138M/20B	10/ 19/23–25	25
62.4	46M	10	73
54.4	1.2B	17	83
39	86M	10	112
27	30M/ 555M	11/ 18	156
19.6	15M/ 478M	11/ 19	206
17.3	256M	21	230
14.6	324M	19	262
14.5	13M	14	264
11.5	7M/ 235M	10/ 20	315
9.2	162M	20	373
7.7	3M/ 101M	10/ 21	420

$\sqrt{s_{ m NN}}$ (GeV)	# Events	Year 20xx (FXT)	μ _B (MeV)
13.7	51M	21	276
11.5	52M	21	315
9.2	54M	21	373
7.7	51M/112M	19/20	420
7.2	155M/317M/89M	18/20/21	440
6.2	118M	20	487
5.2	103M	20	541
4.5	108M	20	589
3.9	53M/117M	19/20	633
3.5	116M	20	666
3.2	201M	19	699
3.0	258M/2.1B	18/21	750

STAR detector system

STAR detector upgrades

- iTPC (since 2019)
 - Improves dE/dx measurement
 - Extends $\eta_{\rm max}$ from 1.0 to 1.5
 - For FXT, $\eta_{\rm max}$ from 2.0 to 2.5
 - Lowers $p_{\rm T}$ cut-in from 125 to 60 MeV/c

- eTOF (since 2019)
 - Forward rapidity coverage
 - Crucial in fixed-target program
 - PID at $0.9 < \eta < 1.5$
 - For FXT, $1.5 < \eta < 2.5$
 - Provided by FAIR-CBM

- EPD (since 2018)
 - $2.14 < |\eta| < 5.09$
 - Improves trigger
 - Better event plane reconstruction
 - Better centrality determination

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619 eTOF: STAR and CBM eTOF Group, arXiv:1609.05102 EPD: J. Adams et al., NIMA 968, 163970 (2020)

Raw net-proton multiplicity distributions

Critical point search: net-proton C_4/C_2

- Non-monotonic energy dependence (3.1σ)
 - Qualitatively consistent with prediction considering critical point
 - Deviates from non-critical models
- Significant suppression at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$
 - Reproduced by UrQMD model (baryon-conservation driven)
 - Predominantly hadronic matter
- Critical region could only exist at $\sqrt{s_{NN}} > 3.0 \text{ GeV}$ if created in HIC

STAR, PRC 107, 024908 (2023)

Critical point search: net-charge & net-kaon cumulants

Critical point search: net-A cumulants

Both baryon and strangeness in Λ-hyperons
Net-Λ fluctuations driven by *B* and *S* conservations

• Monotonic energy dependence of $C_2/C_1 \& C_3/C_2$ at $\sqrt{s_{\text{NN}}} = 19.6 - 200 \text{ GeV}$

• Qualitatively predicted by models

- Clear suppression of C_3/C_2 at $\sqrt{s_{\rm NN}} = 3.0 \,{\rm GeV}$
- QvdW-HRG shows better agreement with data
 Quantum Van der Waals interaction included
 Effect of hadronic interactions at low energy

Crossover search: net-proton C_6/C_2

• Progressively negative C_6/C_2 from peripheral to central collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$

- Consistent with lattice QCD calculation in $\sqrt{s_{NN}} = 200$ GeV central collisions
 - Hint of smooth crossover at top RHIC energy

• UrQMD prediction always around unity (statistical baseline) STAR, PRL 127, 262301 (2021)

Crossover search: net-proton $C_5/C_1 \& C_6/C_2$

• C_5/C_1 (0-40% at $\sqrt{s_{\rm NN}} = 7.7 - 200$ GeV) fluctuates around zero at all energies

- Increasingly negative C_6/C_2 (0-40%) as collision energy $\sqrt{s_{NN}}$ decreases down to 7.7 GeV • Trend consistent with LQCD calculation (UrQMD always positive or ~ 0)
- Positive $C_5/C_1 \& C_6/C_2$ at 3.0 GeV, obviously different trend

STAR, PRL 130, 082301 (2023)

Crossover search: net-proton $C_7/C_1 \& C_8/C_2$

• Peripheral: fluctuates around zero

- Central: negative (~1.4 σ) at $\sqrt{s_{NN}} = 27$ GeV, consistent with zero at 54.4 & 200 GeV
 - No clear energy dependence within large uncertainties

Crossover search: net-proton C_n in different systems

• Results in different systems follow a decreasing trend as multiplicity increases

- Smoothly connect each other in p+p, Zr+Zr, Ru+Ru and Au+Au collisions
- Cumulant ratios in most central Au+Au collisions agree with lattice QCD calculations
 Hint of smooth crossover at top RHIC energy

B, Q, S correlations: net-p,Q,K off-diagonal C_2

- Second-order off-diagonal to diagonal cumulant ratios between
 - Net-proton and net-kaon
 - Net-charge and net-kaon
 - Net-charge and net-proton
- Roughly reproduced by UrQMD
- No strong dependence on centrality or collision energy
- Possible measurements of *B*, *Q*, *S* correlations including hyperons in BES-II

Deuteron production mechanism: deuteron cumulants

 Energy dependence qualitatively reproduced by UrQMD+Coalescence model and CE Thermal-FIST model

STAR, arXiv:2304.10993

Future prospects: search for critical point

- BES-II collision energies from √s_{NN} = 3.0 to 27 GeV
 Map QCD phase diagram up to µ_B = 750 MeV
 Fill in energy gap in √s_{NN} = 3.0 7.7 GeV
- Much more statistics than BES-I
 - Precision measurements for higher-order fluctuations
- Enlarged rapidity coverage after detector upgrades
 Rapidity scan: sensitive probe for critical region

Future prospects: search for crossover

- Precision measurement of hyper-order cumulants $C_5 - C_8$
 - Sensitive probes for crossover
 - Vulnerable to backgrounds
 - Statistics hungry
 - 2.1B events at $\sqrt{s_{\text{NN}}} = 3.0 \text{ GeV} (2021)$
 - 20B events at $\sqrt{s_{NN}} = 200 \text{ GeV} (2023-2025)$

PQM

Future prospects: probing magnetic field in HIC

B-S

20

(all particles)

- Second-order off-diagonal cumulants of net-baryon, net-charge, net-strangeness
 - Sensitive observable for magnetic field
 - Hyperons (Λ , Ξ , ...) should be taken into account
 - Play an important role in *B-S* correlations
 - Could be measured in BES-II and isobar (Zr+Zr & Ru+Ru) data

Au + Au

UrQMD 39GeV

ml<0.5

WHBM 2023, April 29-30, Tsukuba

Future prospects: initial volume fluctuation

• Lower multiplicity at lower energy -> worse centrality resolution

• Significant effect of initial volume fluctuation in low-energy collisions

Summary

- Lots of fluctuation measurements from STAR
 Net-proton, net-charge, net-kaon, ...
- Several hints on QCD phase structures
 - Hint of smooth crossover at top RHIC energy
 - Predominantly hadronic matter at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$
 - Critical region could only exist at $\sqrt{s_{\text{NN}}} > 3.0 \text{ GeV}$ if created in HIC
- BES-II fluctuation measurements at high baryon density are ongoing!

Thank you for your attention!