Resonance Production in Au+Au Collision at STAR

Md Nasim (IISER Berhampur) For the STAR Collaboration

WPCF – Resonance Workshop 2023

Catania (Italy), November 6-10, 2023

Supported in part by:

Outline

- Motivation
- The STAR Experiment
- Results
- Invariant yields of K^{*0} and φ
- Anisotropic flow of $\,\varphi\,$
- Summary

Beam Energy Scan at RHIC

Collider Mode ($\sqrt{s_{NN}}$)= 7.7-200 GeV Fixed Target ($\sqrt{s_{NN}}$): 3-7 GeV

The QCD phase diagram

Varying beam energy varies Temperature (T) and Baryon Chemical Potential (μ_B).

Resonances

"Resonances" are short lived particles, existing for ~10⁻²³ seconds

$$A+B \longrightarrow R^* \longrightarrow C+D$$

Cross-section shape of resonance state R* given by the **Breit-Wigner**.

- Decays through strong interaction
- Lifetime of resonance : $\tau = \frac{\pi}{\Gamma}$

Example: ρ^0 (770), K*(892), $\Phi(1020)$, $\Sigma^{\pm}(1385)$, $\Lambda^0(1520)$, $\Xi^0(1530)$

Observation of the first resonance

First resonance particle was discovered in a bubble chamber experiment at Berkeley

RESONANCE IN THE $K-\pi$ SYSTEM*

Margaret Alston, Luis W. Alvarez, Philippe Eberhard,[†] Myron L. Good,[‡] William Graziano, Harold K. Ticho,^{||} and Stanley G. Wojcicki Lawrence Radiation Laboratory and Department of Physics, University of California, Berkeley, California (Received February 16, 1961)

In a continuation of the study of the interaction of 1.15-Bev/c K⁻ mesons in hydrogen by means of the Lawrence Radiation Laboratory 15-inch hydrogen bubble chamber, we now report a study of the reaction¹

$$K^- + p \rightarrow \overline{K}^0 + \pi^- + p. \tag{A}$$

Examples of this reaction were easily identified in those cases in which the \overline{K}^0 decayed into charged pions and appeared in the chamber as a two-prong interaction associated with a V. A kinematic analysis isolated 48 events of reaction (A) from other events with similar topology.² In only one case was the identification not unique. one to expect a minimum of 16 events in the region $T_p \leq 15$ Mev, only three are found there. No experimental bias against very low energy protons in the K-p center-of-mass system can exist, since such protons have laboratory-system momenta of approximately 600 Mev/c, and are easily identified. The observed distribution can best be explained by a quasi-two-body reaction of the type

$$K^- + p \rightarrow K^{*-} + p, \qquad (B)$$

followed by a decay,

$$K^{*-} \rightarrow \overline{K}^{0} + \pi^{-}$$
. (C)

Observation of the first resonance

First resonance particle was discovered in a bubble chamber experiment at Berkeley

RESONANCE IN THE $K-\pi$ **SYSTEM**^{*}

Margaret Alston, Luis W. Alvarez, Philippe Eberhard,[†] Myron L. Good,[‡] William Graziano, Harold K. Ticho, ^{||} and Stanley G. Wojcicki Lawrence Radiation Laboratory and Department of Physics, University of California, Berkeley, California (Received February 16, 1961)

one to expect a minimum of 16 events in the region $T_p \leq 15$ Mev, only three are found there. No experimental bias against very low energy protons in the *K-p* center-of-mass system can exist, since such protons have laboratory-system momenta of approximately 600 Mev/*c*, and are easily identified. The observed distribution can best be explained by a quasi-two-body reaction of the type

$$K^- + p \rightarrow K^{*-} + p, \qquad (B)$$

followed by a decay,

$$K^{*-} \rightarrow \overline{K}^{0} + \pi^{-}$$
. (C)

Resonances as probe in heavy-ion collisions

Probing partonic collectivity through ϕ

- Lifetime ~ 42 fm/c
- Early freeze-out
- Small hadronic interaction cross section

Probing hadronic phase through K*

- Lifetime ~ 4 fm/c
- Decay daughters could be affected by in-medium interaction

The STAR Experiment

Particle Identification

$$\phi \longrightarrow K^+ + K^-$$

Branching Ratio: ~ 0.49

$$K^{*0} \longrightarrow K^{+} + \pi^{-}$$

Branching Ratio: ~ 0.66

Pions and Kaons are identified using TPC and TOF detectors

K^{*0} and ϕ reconstruction

 K^{*0} and ϕ reconstructed via hadronic decay channels through invariant mass method

The signal is fitted with a Breit-Wigner function plus a linear residual background after mixed event background subtraction.

Phys. Rev. C 79 (2009) 64903 (STAR)

Measurement at Top RHIC Energy

φ and K*⁰ spectra at 200 GeV

- Spectra is fitted with Levy fit
- Fit functions used to extrapolate yields in unmeasured regions

Mean transverse momentum at top RHIC and LHC energies

Phys. Rev. C 84 (2011) 034909 (STAR) Phys. Rev. C 79 (2009) 064903 (STAR) Phys. Rev. C 79 (2009) 034909 (STAR) Phys. Rev. C 91 (2015) 024609 (ALICE) Phys. Rev. C 88 (2013) 044910 (ALICE)

Mean transverse momentum at top RHIC and LHC energies

- Mean p_{τ} of K* and ϕ close to proton (similar mass)
- Mean p_T at LHC > Mean p_T at RHIC, consistent with increased radial flow at LHC

Particle ratios (K*⁰/K- and φ/K-) at top RHIC and LHC energies

Phys. Rev. C 84 (2011) 034909 (STAR) Phys. Rev. C 79 (2009) 064903 (STAR) Phys. Rev. C 79 (2009) 034909 (STAR) Phys. Rev. C 91 (2015) 024609 (ALICE) Phys. Rev. C 88 (2013) 044910 (ALICE)

Particle ratios (K^{*0}/K⁻ and φ/K⁻) at top RHIC and LHC energies

Particle ratios (K^{*0}/K- and φ/K-) at top RHIC and LHC energies

Dominance of hadronic re-scattering in central A+A collisions

Lower limit of hadronic phase lifetime

$$(K^{*0}/K)_{kin} = (K^{*0}/K)_{chem} \times e^{-\Delta t/\tau}$$

Where, Δt = lower limit of hadronic phase lifetime (t_{kin} - t_{chem})

Assumptions: • $(K^{*0}/K)_{kin} \approx (K^{*0}/K)_{AA}$ • $(K^{*0}/K)_{chem} \approx (K^{*0}/K)_{pp}$

No regeneration

Smaller Δt at RHIC compared to LHC

Phys.Lett.B 802 (2020) 135225 (ALICE) Phys. Rev. C 84 (2011) 034909 (STAR) Zhangbu Xu. J. Phys. G 30 (2004), S325--S334 S. Singha, et al. Int. J. Mod. Phys. E 24 (2015) 05, 1550041

Measurement at BES Energies

K^{*0}/K ratio from UrQMD model

A.K. Sahoo et al, arXiv : 2307.06661

at BES energies

50

10

20

30

Time (fm/c)

40

K^{*0} spectra at BES energies

• Fit functions used to extrapolate yields in unmeasured regions

BES-I

$\boldsymbol{\varphi}$ spectra at BES energies

BES-I

Particle ratios (K*⁰/K and ϕ /K) at BES energies

BES-I

φ/K ratio : Weak centrality dependence

K*0/K ratio: decreases with increasing centrality, more re-scattering in central collisions

Indicating dominance of hadronic re-scattering in central Au+Au collisions

Phys. Rev. C 107 (2023) 34907 (STAR)

K^{*0}/K ratio : Multiplicity Dependence

K*0/K ratio: decreases with increasing multiplicity

BES-I

K^{*0}/K ratio : Multiplicity Dependence

K*⁰/K ratio: decreases with increasing multiplicity Ratios at BES do not seem to follow multiplicity scaling with top RHIC and LHC energies. Precise measurement are needed to confirm.

Phys. Rev. C 107 (2023) 34907 (STAR)

K^{*0}/K Ratio: Model Comparison

- Thermal model explains K^{*0}/K in peripheral collisions, but overestimates the ratio in central collisions
- UrQMD with longer hadronic phase is needed to explain K^{*0}/K in central collisions

Particle ratio from BES-phase II data

• $(K^{*0}/K)_{central} < (K^{*0}/K)_{peripheral}$

Precise measurement at BES-II confirms the dominance of hadronic rescattering in central Au+Au collisions

Probing Partonic Collectivity Using φ Meson

Collectivity in heavy-ion collisions

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} [1 + 2v_{1}\cos(\phi - \Psi_{R}) + 2v_{2}\cos 2(\phi - \Psi_{R}) + \dots]$$

 v_1 – Directed flow

v₂ – Elliptic flow

Sensitive to initial dynamics

ϕ mesons v₂: Probe to Partonic Collectivity

NCQ Scaling of Elliptic Flow

• ϕ meson v₂ follow NCQ scaling with other hadrons.

NCQ Scaling of Elliptic Flow

• ϕ meson v₂ follow NCQ scaling with other hadrons.

Evidence of partonic collectivity at 14.6 and 19.6 GeV.

Summary

Invariant Yield:

- K*⁰/K ratio in central Au+Au collisions is smaller than in p+p and peripheral Au+Au collisions
- φ/K ratio shows weak centrality dependence

Consistent with hadronic re-scattering for resonances with short lifetime

Elliptic Flow:

• Elliptic flow of $\varphi~$ mesons follow NCQ scaling with other hadrons at 14.6 and 19.6 GeV

Evidences of partonic collectivity at 14.6 and 19.6 GeV.

Thanks.