

Femtoscopic correlation between D⁰-K in Au+Au collisions @ $\sqrt{s_{NN}}$ = 200 GeV at STAR

Priyanka Roy Chowdhury

(for the STAR Collaboration)

Warsaw University of Technology, Poland

WPCF – Resonance workshop Catania, November 10, 2023

Femtoscopic correlation

- Femtoscopic correlations are observed between pair of particles with low relative momentum
- It is measured as a function of the reduced momentum difference (k*) of the pair of particles in rest frame

$$C(\vec{k}^*) = \int S(\vec{r}^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3r^*,$$

where, $S(\vec{r}^*) \rightarrow$ source emission function $\vec{r}^* \rightarrow$ relative separation vector $\Psi(\vec{k}^*, \vec{r}^*) \rightarrow$ pair wave function

Femtoscopic correlation & \boldsymbol{k}^{*}

- ➤ Femtoscopic Correlation ► QS + FSI
 - Quantum Statistics [QS]: Bose-Einstein QS + Fermi-Dirac QS
 - Final-State-Interaction [FSI]: Strong & Coulomb interaction

(absent for our system)

Motivation - QGP

- Femtoscopic correlation is sensitive to the interactions in the final state as well as to the extent of the region from which correlated particles are emitted
- → D⁰-hadron femtoscopy provides information about interaction between of charm and light quarks within QGP medium
- Average distance between emission points of correlated pairs is known as 'Length of homogeneity'
- This length could be interpreted as a measure of how far the interaction between charm quarks and light quarks extends in a medium

Motivation – pp collisions

→ First studies of D-hadron interactions in pp at \sqrt{s} = 13 TeV by the ALICE experiment

- → CF data for pD⁻ and pD⁺ pairs are compatible within (1.1 1.5)σ with theory predictions obtained from the hypothesis of Coulomb only interaction
- → Small values of $a_{\pi D}$ (scattering length) → small role of D meson re-scattering in the hadronic phase of heavy-ion collisions

Priyanka Roy Chowdhury

Motivation - theory

- Source size dependence of correlation functions for D⁰π⁺ and D⁺π⁰ mixed states (left) and D⁰K⁺ pairs (right)
- → Smaller emission source size → Stronger correlation
- → CF is sensitive to the resonance effects (D_0^* for $C_{D\pi}$ and D_{S0}^* (2317)[±] for $C_D^{0}_{K^+}$)
- → Resonance effect dilutes with increasing source size

STAR (Solenoidal Tracker At RHIC)

Priyanka Roy Chowdhury

WPCF – Resonance Workshop, Nov 10, 2023

STAR (Solenoidal Tracker At RHIC)

TPC (Time Projection Chamber)

STAR (Solenoidal Tracker At RHIC)

HFT (Heavy Flavour Tracker)

Particle Identification (PID)

Ref. - STAR: Phys. Rev. C 99, 034908 (2019)

Particle identification using TPC (left) and TOF (right)

- → dE/dx bands for π and K overlap around 0.7 GeV/c
- To distinguish between π and K at lower momenta (< 1 GeV/c), TOF info was required</p>

Reconstruction of D⁰ meson

- Decay length distance between decay vertex and primary vertex (PV)
- → Distance of Closest Approach (DCA) between:
 - a) K⁻ & π⁺ DCA₁₂
 - b) π^+ & PV DCA_{π}
 - c) K⁻ & PV DCA_K
 - d) D^0 & PV DCA_{D0}
- → θ angle between \vec{P} & decay length
- → Here $D^0 \rightarrow mixture \ of \ D^0 (K^-\pi^+) \ and \ \overline{D}^0 (K^+\pi^-)$

Topological selection criteria:

$D^0 \; p_T \; ({ m GeV/c})$	0 - 1	1-2	2-3	3-5	5-10
decay length $(\mu m) >$	145	181	212	247	259
DCA between 2 daughters $(\mu m) <$	84	66	57	50	60
DCA between D^0 and PV $(\mu m) <$	61	49	38	38	40
DCA between π and PV (μm) >	110	111	86	81	62
DCA between K and PV $(\mu m) >$	103	91	95	79	58
pointing angle $\cos(\theta) >$	0.99	0.99	0.99	0.99	0.99

1(

D⁰ Invariant Mass

Analysis

- Data set: Au+Au, Run 2014
- Energy: 200 GeV
- Trigger: Minimum bias
- Centrality: 0 80%
- Analyzed events: 604 M
- Applied formula to measure correlation function $C(k^*)$ for D^0/D^0 $K^{+/-}$ → pairs (

$$C(\vec{k}^*) = \mathcal{N} \frac{A(k^*)}{B(\vec{k}^*)}.$$

where, $A(\vec{k}^*)$ and $B(\vec{k}^*) \rightarrow k^*$ distribution for correlated and uncorrelated pairs $\mathcal{N} \rightarrow$ normalization factor

 \rightarrow To calculate k^{*} for uncorrelated pairs, event mixing technique was applied

1. Variation of topological cuts for D⁰ reconstruction

2. Inclusion of uncertainty from D⁰-K pair-purity correction

Variation of topological cuts for D⁰ reconstruction
 Inclusion of uncertainty from D⁰-K pair-purity correction

$$C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) - 1}{\text{PairPurity}} + 1$$

where PairPurity = **D**⁰ **purity** * **hadron purity**

Variation of topological cuts for D⁰ reconstruction
 Inclusion of uncertainty from D⁰-K pair-purity correction

$$C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) - 1}{\text{PairPurity}} + 1$$

where PairPurity = **D**⁰ **purity** * **hadron purity**

Momentum distribution of D⁰ & K

- → Mean kaon momentum: ≈ 0.62 GeV/c
- Due to overlap with other hadrons, kaon with p < 1 GeV/c has been considered only
- Kaon purity ~ 97% \pm 3%

Variation of topological cuts for D⁰ reconstruction
 Inclusion of uncertainty from D⁰-K pair-purity correction

$$C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) - 1}{\text{PairPurity}} + 1,$$

where PairPurity = **D**⁰ **purity** * **hadron purity**

→ Overall uncertainty on D⁰-K pair purity ~ 10% which covers all possible systematic uncertainties

Result: D^0/\overline{D}^0 - $K^{+/-}$ correlation

- → C(k^{*}) contains D^0 -K⁺, D^0 -K⁻, \overline{D}^0 -K⁺ and \overline{D}^0 -K⁻ with kaon momentum < 1 GeV/c and $D^0 p_T >$ 1 GeV/c
- → Ref. CF estimated for D⁰-K⁺ using next-toleading order (NLO) -Heavy Meson Chiral Perturbation Theory (HMChPT) scheme
- STAR data shows no correlations, but the data also consistent with theoretical model predictions with emission source size of 5 fm or larger
- → Resonance effect of D_{S0}^{*} (2317)[±] state is NOT visible due to large source size or large experimental uncertainties

Summary & Future Plans

- D-meson femtoscopy is useful to probe its interaction behavior and the phase space geometry of emission source
- ➤ Adding more statistics (Run 2016) to achieve more precise results
- Model study (ex. Lednický–Lyuboshitz) is on the plan to extract interaction parameters, like emission source size
- This study can lead us to get an insight of screening length of charm quarks within QGP medium
- Theoretical inputs are needed to explore the nature of interaction between charm and light quarks within QGP medium
- Analysis of D⁰-π/p femtoscopy in Au+Au collisions at STAR are ongoing

Selection criteria

Track cuts

- p_T >0.5 GeV/c
- |dca_sign| >0.0050cm.
- nHitsFit >= 20
- |pseudorapidity| <=1.0

• $|V_y| > 1.0e-5$ cm.

• $|V_x| > 1.0e-5$ cm.

Event cuts

• $|V_{1}| < 6.0$ cm.

• $\sqrt{[(V_x)^2 + (V_y)^2]} \le 2.0$

• $|V_z - V_z V_{pd}| < 3.0$ cm.

• Centrality = 0-80%

PID cuts for Pions, Kaons & Protons

- |nSigmaPion| < 3.0
- |nSigmaKaon| < 2.0 & |nSigmaProton| < 2.0
- |(1/beta) (1/beta_{Pion})| < 0.03
- |(1/beta) (1/beta_{Kaon})| < 0.03
- |(1/beta) (1/beta_{Proton})| < 0.03

Correction of detector effects

1. Self correlation: Possible correlation between D⁰ candidates and their daughters were removed

Hadron (chosen for pairing with D^0) track id \neq Track id of $D^0(\pi^+K^-)$

2. Track splitting: Track splitting causes an enhancement of pairs at low relative pair momentum k^{*}. This enhancement is created by a single track reconstructed as two tracks, with similar momenta. Track splitting mostly affects identical particle combinations (here, $\pi_D^0 - \pi$ and $K_D^0 - K$), as one track may leave a hit in a single pad-row. Due to shifts of pad-rows, it can be registered twice. In order to remove split tracks, we applied following condition.

No. of hit points / Max no. of hit points > 0.51

Priyanka Roy Chowdhury

Correction of detector effects

3. Track merging:

Merging of tracks inside TPC

Approach 1:

- $\delta r(i) < mean TPC distance separation \rightarrow$ 'merged' hits
- δr(i) distance between TPC hits of two tracks
- Pair of tracks with fraction of merged hits > 5% were removed as 'merged tracks'
- The technique was adopted from HBT maker
 Approach 2:
- → $\delta r(i) < threshold \rightarrow$ 'merged' hits

Approach 3:

→ **SE/ME of** $\Delta \eta$ **vs** $\Delta \phi$ **distribution** \rightarrow no dip around 0 \rightarrow negligible effect of merged tracks

