

Measurements of Y Production and Nuclear Modification Factor at STAR

Anthony Kesich University of California, Davis STAR Collaboration

Outline

- Motivation for measuring Upsilons
- The Solenoidal Tracker At RHIC and its triggers
- Y production cross section in p+p
- Y production and CNM effects in d+Au
- Y Nuclear Modification Factor in Au+Au
- Conclusions

Goal: Quarkonia states in A+A 💢

Charmonia: J/Ψ , Ψ ', χ_c

Bottomonia: Y(1S), Y(2S), Y(3S)

Key Idea: Quarkonia Melt in the plasma

- Color screening of static potential between heavy quarks:
- Suppression of states is determined by T_c and their binding energy
- Lattice QCD: Evaluation of spectral functions $\Rightarrow T_{melting}$

Sequential disappearance of states:

- \Rightarrow Color screening \Rightarrow Deconfinement
- \Rightarrow QCD thermometer \Rightarrow Properties of QGP

When do states melt?

H. Satz, HP2006

Measuring the Temperature

Lattice QCD Calculations:

Quarkonia's suppression pattern > QGP thermometer

Dissociation temperatures of quarkonia states

$q\bar{q}$	J/Ψ	χ_c	ψ'	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T/T_c	1.10	0.74	0.2	2.31	1.13	1.10	0.83	0.75

S. Digal, P. Petreczky, H. Satz, hep-ph/0110406

- For Y production at RHIC
- A cleaner probe compared to J/Ψ
 - co-mover absorption → negligible
 - recombination \rightarrow negligible
 - d-Au: Cold Nuclear Matter Effects
 - Shadowing / Anti-shadowing at y≈0
- Challenge: low rate, rare probe
 - Large acceptance detector
 - Efficient trigger

450 MeV $\Upsilon(1S)$ $\chi_b(1P)$ 240 MeV $J/\psi(1S)$ 200 MeV $\chi_c(1P)$

- Expectation:
 - Y(1S) no melting
 - Y(2S) likely to melt
 - Υ(3S) melts

4

Triggering on Y decays

Level O Trigger (p+p,d+Au,Au+Au):Hardware-basedFires on at least one high tower

Level 2 Trigger (p+p,d+Au): •Software-based •Calculates: •Cluster energies •Opening angle

Mass

High rejection rate allowed us to sample entire luminosity

April 11, 2012

Υ in p+p 200 GeV

Y in p+p 200 GeV, Comparisons

STAR $\sqrt{s}=200 \text{ GeV p+p }\Upsilon+\Upsilon'+\Upsilon'' \rightarrow e^+e^- \text{ cross}$ section consistent with pQCD and world data trend

Phys. Rev. D 82 (2010) 12004

April 11, 2012

WWND 2012 - A. Kesich

Υ in d+Au 200 GeV

Signal has ~8 σ significance p_T reaches ~ 5 GeV/c

|y| < 0.5 $\int L dt = 32.6 \text{ nb}^{-1}$ $N_{\gamma}(\text{total}) = 172 \pm 20(\text{stat.})$

A Constant of the second

Y in d+Au 200 GeV, Comparison

$$\mathbf{R}_{\mathbf{dAu}} = \frac{1}{N_{bin} \times \frac{\sigma_{dAu}}{\sigma_{pp}}} \times \frac{\mathbf{B}_{ee} \times \left(\frac{\mathbf{d}\sigma_{\mathbf{dAu}}}{\mathbf{dy}}\right)_{\mathbf{y}=\mathbf{0}}^{\mathbf{Y}+\mathbf{Y}'+\mathbf{Y}''}}{\mathbf{B}_{ee} \times \left(\frac{\mathbf{d}\sigma_{pp}}{\mathbf{dy}}\right)_{\mathbf{y}=\mathbf{0}}^{\mathbf{Y}+\mathbf{Y}'+\mathbf{Y}''}}$$

 $\sigma_{dAu} = 2.2 \text{ b} \quad \sigma_{pp} = 42 \text{ mb}$ N_{bin} = 7.5 ± 4 for minbias dAu

$$R_{dAu} = 0.78 \pm 0.28 \pm 0.20$$

STAR $\sqrt{s}=200$ GeV d+Au Y+Y'+Y" $\rightarrow e^+e^-$ cross section consistent with pQCD and minimal shadowing effects

April 11, 2012

Y in Au+Au 200 GeV

Raw yield of $\Upsilon \rightarrow e^+e^-$ with $|y| < 0.5 = 197 \pm 36$

∫*L* dt ≈ 1400 µb⁻¹

April 11, 2012

WWND 2012 - A. Kesich

Y in Au+Au 200 GeV, Centrality

Ύin Au+Au 200 GeV, R_{AA}

Y in Au+Au 200 GeV, Comparison

Y in Au+Au 200 GeV, Comparison

- Assumes dynamic system evolution and feed-down
- Model A uses Free Energy
- Model B uses Internal Energy
- •The three curves cover a range 428 MeV $\leq T_0 \leq 442$ MeV
- Clearly, more statistics are needed to reach a conclusion

M. Strickland and D. Bazow, arXiv:1112.2761v4

Conclusions and Outlook

- Measured Y production in p+p, d+Au, and Au+Au collisions at 200 GeV
- Production in d+Au consistent with binary scaling and cold nuclear matter effects
- Au+Au results consistent with complete 2S+3S suppression in central collisions
- Increased statistics from run 11 will further decrease R_{AA} uncertainties