$\Delta \eta - \Delta \phi$ correlations and ridge in STAR

L.C. De Silva for the STAR collaboration University of Houston

28th Winter Workshop on Nuclear Dynamics Dorado del Mar, Puerto Rico

1

Outline

- Motivation
- Correlation measure
- P_T dependence of $\Delta \eta$ - $\Delta \phi$ correlations
- Model fit function
- Data interpretation
- Other ridge studies from STAR
- Summary and discussion

Motivation – long range correlation in $\Delta \eta$

Motivation – long range correlation in $\Delta \eta$

Motivation – long range correlation in $\Delta \eta$

• We increase the momentum of both particles

Data and cuts

- Au+Au 200GeV 0-10%, 11M events
- p+p 200GeV Minimum bias, 264M events
- Event cuts: Primary vertex cut (+/- 25cm) and z-vertex sub binning
- Track cuts:
 - Charged particle tracks in TPC were used
 - p_T ≥ x GeV/c; lower limit x is varied for both particles for the p_T evolution (0.15, 0.3, 0.5 GeV/c,)
 - $-1 \le \eta \le 1$

Tracks produced in a central event

Correlation Measure

We construct the Pearson's correlation coefficient

• Number of correlated pairs per final state particle

Momentum evolution – AuAu200GeV

Momentum evolution – AuAu200GeV

Does the data support higher order harmonics?

Higher order Fourier coefficients seen in high p_{T} very central (0-1%) raw dihadron correlation spectra at RHIC and LHC

2<=p_T<=5 GeV/c

0.04

0.03

0.02

0.01

-0.02

0.03

0.02

0.01

Δø

Theory prediction

Using transport model а theorists have predictions for higher order azimuthal anisotropies in very central events

FIG. 2: (Color online) Azimuthal anisotropies of hadron spectra $v_n(p_T)$ (n = 1 - 6) in central (b = 0) Au + Au collisions at $\sqrt{s} = 200$ GeV from AMPT model calculation.

Model Fit function

Model fit - harmonics

• $< p_T >$ evolution of resulting harmonics structure : $v_2 + v_3 + v_4 + v_5$

• Harmonics do not model $\Delta \eta$ dependence

Model fit - asymmetric 2d Gaussian

 Shows the asymmetric 2d Gaussian ("remainder") component p_T cut evolution after higher harmonics subtraction

- Near side (NS) peak strength around (0,0) increases at higher p_T cuts
 - An effect due to definition of correlation measure (also visible in raw correlation)
 - The effect is constrained in a narrow $\Delta \eta \Delta \phi$ region around (0,0) ("jet region")
 - In this region the raw same event and mixed event pair count fall off exponentially
 - The relative fall off for same event pairs is smaller compared to mixed pairs as a function of p_{T} cut

Free parameter comparison

- NS harmonics and remainder amplitudes are compared
- Asymmetry of remainder is quantified
- NS harmonics strength reaches a minimum value at higher p_T
- NS harmonics amplitude in the <p_T> region from 1-2 GeV/c is comparable to remainder amplitude
- Above $\langle p_T \rangle \sim 2.5 \text{GeV/c}$ the remainder models possible unmodified jet correlation
 - The widths become symmetric above ~2.5GeV/c
 - Correlation function strength increases in jet region
- Below $< p_T > \sim 2.5 GeV/c$ remainder could be due to possible modified jet phenomena
 - $\Delta \eta$ width peaks around 0.9 GeV/c. $\Delta \eta / \Delta \phi$ widths ratio is ~ 2:1 around 0.9 GeV/c
 - See next slide for comparison to widths in 200 GeV p+p collisions

Asymmetric 2d Gaussian – p+p comparison

• At the highest momenta ($<p_T > > 2GeV/c$) the Au+Au widths are increased by about a factor of 2 relative to the p+p widths

- Asymmetry in p+p widths disappears at $< p_T > \sim 1.5$ GeV/c
- Maximum $\Delta\eta$ width modification is larger (by a factor 2) than that of $\Delta\phi$

Flow comparisons

16

Other ridge studies from STAR

$\Delta \eta$ dependence of triangular flow (v₃)

✤ Focus on mid central, 0.15<p_T<2 GeV/c, 2 – particle cumulant</p>

Main Idea:

 v_3^2 {2, $\Delta\eta$ } as a function of $\Delta\eta$ data can be fitted with sum of two Gaussians:

- 1. A narrow Gaussian: Short range non flow (HBT/e⁺e⁻⁾
- 2. A wide Gaussian: Flow + Flow fluctuations + Long range non flow

Triangular flow harmonic shows $\Delta \eta$ dependence

Triangular flow (v_3) : Flow, flow fluctuations and non- flow

Charge dependence studies estimate possible non-flow contribution

Width and amplitude of the wide Gaussian

Triangular flow (v_3) : Flow, Fluctuations and Non Flow

Δη

Additional study of 2d correlations

Additional study of 2d correlations

NS 2d Gaussian Volume by Δη Region

NS 2d Gaussian $< p_T > \sim 1.4 \text{ GeV/c}$

n 12

80.0

0.06

0.04

0 02

0.12

0.08

0.06

0.04

n n2

18-28%

1.5 2 2.5 3 3.5 4 4.5

18-28%

0.12

0.08

0.06

0.04

02

-0.5 0

Δn

0.035 0.03

0.025

0.02

0.015 0.01

0.005

Δ¢

38-46%

*STAR Preliminary 23

NS 2d Gaussian Volume by Δη Region

Away-side momentum Distribution

0.07

0.06

0.05

0.04

0.03

0.02

0.01

×^{-4.5}

3.5

з

2.5

2

1.5

∽^{--4.5}

3.5

3.5

3

2.5

2

1.5

64-74%

1.5 2 2.5 3 3.5 4 4.5

28-38%

У,

1.5 2 2.5 3 3.5 4 4.5

55-64%

0.07

0.06

0.05

0.04

0.03

0.02

0.01

У,

×^{--4.5}

3.5

2.5

2

1.5

Q.07

0.06

0.05

0.04

0.03

0.02

0.01

p.07

0.06

0.05

0.04

0.03

0.02

0.01

У,

Away-side momentum conservation term

*STAR Preliminary

Away-side momentum Distribution

Summary and discussion

- Near side Δη-Δφ correlations show a smooth evolution as a function of <p_T>. One interpretation of the "Ridge structure" is a sum of "initial state density fluctuations" in addition to a "modified jet-like structure"
- Possible initial state density fluctuation contributions are extracted using higher harmonics model components which agree reasonably well with predicted hydro scaling relations
- Higher harmonics correlation strength (yield*v_n) reduces at higher <p_T>
- The remaining structure after higher harmonics subtraction is quantified using p+p data at the same collision energy
- Within the assumptions of the model presented, a "modified jet" structure is observed as a function of <p_T>
- Additional studies reveal possible $\Delta \eta$ dependency in triangular flow
- An alternate model without higher harmonics and representing possible modified jet formation can describe the data and indicates a <p_T> at large Δη that is higher than the <p_T> of the inclusive spectra