

Flow in the RHIC Beam Energy Scan from STAR

Xu Sun for STAR Collaboration

Harbin Institute of Technology Lawrence Berkeley National Lab

WWND 2014

The Beam Energy Scan at RHIC

Methods to study the QCD phase space:

- QGP at high T and/or $\mu_{\rm B}$
- \rightarrow R_{AA}, NCQ scaling of v₂,...
- We expect from QCD lattice calculations a cross over at high energies
- First order phase transition?
- \rightarrow Azimuthal HBT, v₁ analyses
- Critical point?
- \rightarrow Fluctuation analyses (net-protons)
- Hadron gas phase at low T and/or $\mu_{\rm B}$

Initial state fluctuation

 \rightarrow v₃ analysis

4/7/14

√s _{NN} (GeV)	MB Events in 10 ⁶
7.7	4.3
11.5	11.7
19.6	35.8
27	70.4
39	130.4
62.4	67.3

*Au+Au minimum bias events at STAR usable for analysis

The Solenoidal Tracker At RHIC (STAR)

Introduction of Flow

Event Plane Reconstruction

Particle Identification

- Full time-of-flight detector for beam energy scan
 - \rightarrow 2D particle identification with dE/dx from TPC and m² from ToF
 - \rightarrow Better PID at low p_T region

'STAR

- Short life time particle reconstruction via invariant mass method
- \rightarrow Great signal to background ratio 4/7/14

Xu Sun - LBNL - HIT

v₁: Rapidity Dependence

7

v_1 : Slope $(dv_1/dy|_{y=0})$ as a function of Beam Energy

arXiv:1401.3043, accepted by PRL

STAR

H. Stoecker, Nucl. Phys. A 750, 121 (2005)

- A minimum near 11.5-19.6 GeV for protons and net protons
 - → Possible signatures for the softest point of the EoS
- UrQMD cannot reproduce this trend
- The sign of net proton $v_1(y)$ changes twice between 7.7 and 39 GeV

v₂: Charged Hadrons

STAR: Phys.Rev. C86, 054908 (2012) ALICE: Phys. Rev. Lett. 105, 252302 (2010)

- v_2 {4} cumulant method \rightarrow insensitive to non-flow
- General shape and magnitude of $v_2{4}(p_T)$ is similar for all energies between 7.7 GeV 2.76 TeV
- In detail: at $p_T < 2 \text{ GeV/c}$ the $v_2{4}$ increases with increasing $\sqrt{s_{NN}}$
- Large collectivity?
- Baseline measurement for identified particle v₂

v₂: Identified Particles

- v_2 up to $p_T = 4 \text{ GeV/c}$
- v_2 is increasing with beam energy
- Particle mixture
 - \rightarrow Pions dominant at 200 GeV
 - \rightarrow Protons dominant at 7.7 GeV

v₂: Mass Ordering

STAR

- Mass ordering at low p_T region at all energies due to radial flow
- $p_{T,radial} \sim m_0 < \beta >$
- The splitting between particle species is increasing with increasing energies for particles
- The splitting between particle species is almost constant for anti-particles

v₂: Protons and anti-Protons

- Difference in v₂ between protons and anti-protons is constant as a function of p_T
- Δv_2 is increasing with decreasing energy

Phys. Rev. C 88, 014902 (2013)

STAR

v₂: Difference between Particles and anti-Particles

STAR

- Beam energy dependent difference in v₂(p_T) between particles and anti-particles is observed
- Particles and anti-particles are no longer consistent with the single Number-of-Constituent Quark scaling

Phys. Rev. Lett. 110, 142301 (2013)

v₂: Theory Comparison

- Hybrid model: The added baryon stopping can explain the difference
- Nambu-Jona-Lasinio (NJL): Using vector mean-field potential, repulsive for quarks, attractive for anti-quarks

4/7/14

STAR

Xu Sun - LBNL - HIT

v₂: Meson and Baryon Splitting Particles

- Meson and baryon splitting at intermediate p_T region at all energies
- More statistics needed (BES II)

STAR

- Meson and baryon splitting at intermediate p_T region down to 19.6 GeV
- More statistics needed (BES II)

STAR

v₂: Number-of-Constituent Quark Scaling

- NCQ scaling holds for particles • and anti-particles separately at all beam energies
 - \rightarrow need more data at low beam energy ($\sqrt{s_{NN}} < 19.6 \text{ GeV}$)

v₃: Charged Hadron at 200 GeV

- Agreement is good not only between RHIC experiments, but also between RHIC and LHC experiments. This is surprising because of the somewhat different Δ η ranges.
- Detail study need to be done
 →Identified particle v₃

	η	< \Lambda <i>\eta ></i>
STAR	<1.0	0.63
PHENIX	< 0.35	≈1.9
ALICE	<0.8	>1.0
ATLAS	<2.5	>0.8

v_3 : p_T Dependence

- Baryon and meson splitting at intermediate p_T range (2-3 GeV/c)?
 - \rightarrow Need more particle species to investigate
- Similar property as v_2

STAR

Xu Sun – LBNL - HIT

v₃: NCQ Scaling

- no scaling observed at 200 (up to 0.8 GeV/c^2) and 39 GeV (up to 0.6 GeV/c^2)
- More particle species are needed to investigate the NCQ scaling

4/7/14

Xu Sun – LBNL - HIT

 v_3 : NCQ $(n_q^{3/2})$ Scaling

21

14.5 GeV from Year 2014

Summary

- v_1 : A minimum of $dv_1/dy |_{y=0}$ near 11.5-19.6 GeV for proton and net proton
 - \rightarrow Possible signatures for the softest point of the EoS
- v_2 and v_3 : Mass ordering at low p_T region
 - \rightarrow Radial flow
- v_2 and v_3 : Meson and baryon splitting at intermediate p_T region (down to 19.6 GeV)
 - \rightarrow Partonic collectivity
- NCQ scaling for v₂: Holds for particles and anti-particles separately \rightarrow need more data at low beam energy ($\sqrt{s_{NN}} < 19.6 \text{ GeV}$)
- NCQ scaling for v₃: Need more particle species and more data
 → BES II
- A good dataset at $\sqrt{s_{NN}}$ = 14.5 GeV was collected in the presently ongoing Year-14

Backup

v₂: particles and anti-particles

