

Dielectron production in 200 GeV p+p and Au+Au collisions at STAR

Yi Guo^{1,2} for the STAR Collaboration

- 1. Lawrence Berkeley National Laboratory
- 2. University of Science and Technology of China

Outline

- ➤ Motivation
- ➤ STAR detector
- Physics results
 - p+p baseline.
 - Low mass enhancement.
 - Possible Charm modification.
- ➤ Summary and Outlook

Motivation

Di-leptons – a bulk penetrating probe

do not suffer strong interactions

bring us the direct information of the medium in heavy-ion collisions

Interesting topics:

- Low mass region (LMR):

 in-medium modifications of vector meson.
- ▶ Intermediate mass region (IMR):
 QGP thermal radiation.
 semi-leptonic decays of correlated charm: charm modification in Au+Au.
- High mass region (HMR):
 heavy quarkonia.
 - Drell-Yan process.

Previous measurement – low mass enhancement

CERES, PRL 75(1995), 1272.

NA60, PRL 96 (2006) 162302, PRL 100 (2008) 022302 Di-muon excess

PHENIX PRC 81 (2010) 034911

Low mass enhancement:

CERES: observed a significant enhancement at LMR.

NA60: ρ broadening can explain the enhancement.

rules out the Dropping-Mass scenario.

PHENIX: Huge enhancement at LMR, but can not be explained by any model.

Motivation – thermal radiation

NA60, Eur. Phys. J. C 59 (2009) 607

Dimoun spectra at SPS:

LMR: dominanted by hadronic source

IMR: from HG and/or QGP

– HG: $\pi a_1 \rightarrow \mu^+ \mu^-$ (Hees/Rapp)

– QGP: qq→ μ ⁺ μ ⁻ (Renk/Ruppert)

Inverse slope of m_T spectra (T_{eff})

- LMR : increasing with mass.
 - radial flow of hadronic source.
- IMR : drop around 1 GeV/c².
 - thermal radiation from partonic source.

Previous results from STAR

p+p 200GeV from year 2009: *Phys. Rev. C 86, 024906 (2012)*

Au+Au 200GeV from year 2010: **QM2012**

STAR detectors

Detectors used in dielectron analysis:

- ► Time Projection Chamber (0<Φ<2π, |η|<1) Tracking momentum Ionization energy loss dE/dx (particle identification)</p>
- ➤ Time Of Flight detector (0<Φ<2π, |η|<1) Time resolution < 100ps – significant improvement for PID

Data Set:

Run Type	Year	Central	Minbias
AuAu200GeV	2010	150M	270M
	2011	N/A	580M
pp200GeV	2012	N/A	375M

Electron identification

Clean electron PID in p+p and Au+Au collisions with a combination of TPC dE/dx and TOF velocity

• Electron purity: (0.2-2.0GeV/c)

AuAu 200GeV	MinBias	~95%
	Central	~93%
pp 200GeV	MinBias	~98%

 $n\sigma_e$ normalized dE/dx

Background

Background

a. Low mass region

Like Sign – acceptance corrected

✓ can reproduce both the combinatorial and correlated background.

x but lack of statistics and need correct

acceptance factor

$$B_{LikeSign} = 2\sqrt{N_{++} \cdot N_{--}} \cdot \frac{B_{+-}^{Mix}}{2 \cdot \sqrt{B_{++}^{Mix} \cdot B_{--}^{Mix}}}$$

Acceptance factor

N: same Event, B^{mix} : mixed Event

b. Mass>0.75GeV/c²

Mixed Event – normalized to Like Sign in mass region [1,2] GeV/c²

- ✓ large statistics and no need to correct acceptance.
- x but can't reproduce correlated background

Background – photon conversion

We use ϕ_{V} angle cut method to remove the photon conversion background as described in:

[PHENIX Collaboration], Phys. Rev. C 81, 034911 (2010).

Definition of ϕ_{v} angle :

$$\begin{split} \hat{u} &= \frac{\vec{p}_+ + \vec{p}_-}{|\vec{p}_+ + \vec{p}_-|}, \hat{v} = \vec{p}_+ \times \vec{p}_- \\ \hat{w} &= \hat{u} \times \hat{v}, \hat{w}_c = \hat{u} \times \hat{z} \\ \cos \phi_{\mathrm{V}} &= \hat{w} \cdot \hat{w}_c \end{split}$$

Cocktail simulation

Input p_⊤ spectra

PHENIX Collaboration, Phys. Rev. C 81, 034911 (2010) STAR Collaboration, Phys. Rev. Lett. 92, 112301 (2004) STAR Collaboration, Phys. Lett. B 612, 181 (2005). STAR Collaboration, Phys. Rev. Lett. 97, 152301 (2006) Z. Tang et al. Phys. Rev. C 79, 051901 (2009).

Contributions from decays of hadrons after they freeze out, usually called hadronic cocktails.

pp 200GeV result from year 2012

Photon conversion background are removed with ϕ_{v} cut.

Cocktail is taken from [Phys. Rev. C 86, 024906 (2012)] with charm cross section changed to 0.797+0.3/-0.36mb [Phys. Rev. D. 86, 072013(2012)]

Within uncertainty, the cocktail simulation reproduces the data very well. With a full TOF coverage and more data taken, year 2012's result has greatly improved statistics ~ 4 times more than year 2009.

AuAu 200GeV results

Submited to PRL arXiv:1312.7397

Enhancement at ρ like region(0.30-0.76 GeV/c²):

1.77±0.11(stat.)±0.24(sys.)±0.41(cocktail) in MinBias.

Data is compared with two models both based on a ρ broadening scenario:

- 1) Model I by Rapp et al. is an effective many-body model. [R. Rapp, Pos CPOD2013, 008 (2013)]
- 2) Model II is a microscopic transport model Parton-Hadron String Dynamics (PHSD). [O. Linnyk et al., Phys. Rev. C 85, 024910 (2012)]

Models show good agreement with data within uncertainty.

Centrality and p_T dependence

Centrality dependence

$p_{\scriptscriptstyle T}$ dependence

The two model calculations show good agreement with data within uncertainty.

Low mass enhancement

arXiv:1312.7397

- >ρ like region (A):
 - --- The enhancement shows weak dependence on centrality and p_T.
- $\succ \omega$ and ϕ region (B), (C):
 - --- Cocktail can reproduce the yield.

Low mass excess

1) excess in LMR (MinBias):

arXiv:1312.7397

Broadened p model calculations can explain STAR data within uncertainties.

Our measurements disfavor a pure vacuum ρ model with a $~\chi^2/NDF=25/8$ in 0.3~1 GeV/c².

2) N_{part} dependence of excess yield:

- (A) ρ like region : 0.3~0.76GeV/c²
- (B) ω region: 0.76~0.80GeV/c²
- (C) φ region: 0.98~1.05GeV/c²
- $\triangleright \omega$ and ϕ region (B), (C):
 - --- Yield shows N_{part} scaling.
- $\triangleright \rho$ like region (A):
 - --- Significant excess. Sensitive to the QCD media dynamics. A power fit

shows: $Y_{excess}^{
ho} \propto N_{part}^{1.54\pm0.18}$

Possible charm de-correlation

arXiv:1312.7397

Ratio(Central/MinBias) shows 2.0 σ deviation from the N_{bin} scaling in 1.8<M_{ee}<2.8GeV/c². Possible charm de-correlation in Au+Au collision or other source from thermal radiation.

Dielectron azimuthal correlation

Dielectron from RHIC BES-I

Model calculations robustly describe the data from 200GeV to 20 GeV:

- model calculations by Rapp, based on in-media broadening of ρ spectra function, expected to depend on total baryon density.
- almost constant baryon density from 20-200GeV.

Outlook – Measure correlated charms

STAR Upgrade

MTD : Full Installed. HFT : Full installed.

STAR Run14: They are taking

data now!!

- HFT topologically reconstructs D mesons from hadronic decays and identifies electrons from charm decays.
- MTD measurement of e-µ correlation clean to correlated charm.
- HFT+MTD help to understand the correlated charm contribution.

Outlook - RHIC BES-II

21

BES Phase 2 (2018-2019):

- > Revisit lower energies.
- Improve statistics extend to IMR.
- Systematically study dielectron continuum from √s = 7.7-19.6GeV. LMR enhancement vs.increasing total baryon density.

Estimation for event statistics needed:

Energy	7.7GeV	9.1GeV	11.5GeV	14.6GeV	19.6GeV
MB events	100M	160M	230M	300M	400M

Summary

>Low-mass region:

- →An enhancement is observed in LMR, with a data/cocktail ratio about 1.77±0.11(stat.)±0.24(sys.)±0.41(cocktail) in MinBias. The enhancement shows weak centrality and p_T dependence.
- → Within uncertainties, broadening of ρ model calculations can explain the enhancement in data from 200 GeV down to 19.6 GeV at RHIC.

➤Intermediate-mass region:

- → Data gives hint for possible charm de-correlate effect in Au+Au collision.
- → Need more precise measurement to constrain charm and QGP thermal radiation contributions. HFT, MTD!!

Work underway to combine Au+Au at 200GeV statistics of year 2010 and year 2011.

Proposed BES Phase-2 will significantly improve the dielectron LMR and IMR statistics

Thank you !!!

Backup

Photon conversion

Acceptance correction

positive and negative tracks: - TPC sector boundary lost in different phi region, especially in low pT region. loss Like Sign pair in mass(<0.2 GeV/c₂), loss unLike Sig GeV/c₂).

Cocktail simulation

Phys. Rev. C 81, 034911 (2010)

Phys. Rev. Lett. 92, 112301 (2004)

Phys. Rev. Lett. 97, 152301 (2006)

Phys. Rev. C 79, 051901 (2009).

Cocktail input:

Tsallis Blast-Wave (TBW) model fits to parameterize data and predicts the p_T spectra for particles without measurements.

J/ψ is taken from the measurement by the PHENIX collaboration.

The correlated charm, bottom and Drell-Yan contributions are obtained from PYTHIA calculations.

ρ meson is not included in the cocktail simulation for AuAu 200GeV.

Cocktail input for AuAu200

	D D	JN7/Jo. 000 -	TImenataint	Defenses
source	B.R.	dN/dy or σ	Uncertainty	Reference
$\pi^0 \to \gamma ee$		98.5	8%	STAR [29, 30]
$\eta o \gamma ee$	7×10^{-3}	7.86	30%	PHENIX [15]
$\eta' o \gamma ee$	9×10^{-4}	2.31	100%	PHENIX [15]
ho ightarrow ee	4.72×10^{-5}	9.88	42%	STAR [41]
$\omega o ee$	7.28×10^{-5}			
$\omega o \pi^0 ee$	7.7×10^{-4}	9.87	33%	STAR [34]
$\phi o ee$	2.95×10^{-4}			
$\phi ightarrow \eta e e$	1.15×10^{-4}	2.43	10%	STAR [35]
$J/\psi o ee$	5.94×10^{-2}	2.33×10^{-3}	15%	PHENIX [36]
$\psi\prime ightarrow ee$	7.72×10^{-3}	3.38×10^{-4}	27%	PHENIX [38, 39]
$c\bar{c} \rightarrow ee$	1.03×10^{-1}	$d\sigma^{c\bar{c}}/dy = 170\mu \mathrm{b}$	35%	STAR [37]
b ar b o e e	1.08×10^{-1}	$\sigma_{pp}^{bar{b}}=3.7~\mu\mathrm{b}$	30%	Pythia[40]
$DY \rightarrow ee$	3.36×10^{-2}	$\sigma_{pp}^{DY} = 42 \text{ nb}$	30%	Pythia[40]

Understand the enhancement in LMR

PHENIX φ acceptance:

$$\phi_{min} \le \phi + q \frac{k_{DC}}{p_T} \le \phi_{max}$$

$$\phi_{min} \le \phi + q \frac{k_{RIHC}}{p_T} \le \phi_{max}$$

 $k_{\rm DC}$ and $k_{\rm RICH}$ represent the effective azimuthal bend to DC and RICH ($k_{\rm DC}$ = 0.206 rad GeV/c and $k_{\rm RICH}$ = 0.309 rad GeV/c).

One arm covers : ϕ_{min} = -3 π /16 to ϕ_{max} = 5 π /16

The other covers : ϕ_{min} = 11 π /16 to ϕ_{max} = 19 π /16

STAR in PHENIX & acceptance

Compare with Rapp's model calculation

In PHENIX acceptance, the enhancement is about 2, consistent with the result from STAR's full acceptance and the ρ broadening model can explain the data.

Phenix with HBD

PHENIX, QM12 Preliminary results report in 20-40%, 40-60%, 60-92%.

Cocktail in Phenix acceptance

Motivation – thermal radiation

NA60, PRL 100, 022302 (2008) STAR, NPA 757,102 (2005) PHENIX, PRL 98, 232301 (2007)

Different slope in m_{τ} spectra in low and intermediate mass at SPS energy.

➤ m<1 GeV/c²: hadronic contributions dominant.

➤ 1<m<3 GeV/c²: partonic contributions dominant.</p>

What about at RHIC energy?

Observables: production cross section vs (mass, p_T).

elliptic flow, polarization et al.