

D⁰ v₂ measurement at STAR

Liang He Purdue University

For the STAR Collaboration

32ND WINTER WORKSHOP ON NUCLEAR DYNAMICS Tuesday, March 1st GUADELOUPE, FRANCE

- \cdot Motivation
- STAR detector with HFT (Heavy Flavor Tracker)
- $\cdot D^{0}$ reconstruction
- · $D^{0} v_{2}$: event plane and two-particle correlation
- · Discussion
- Summary and outlook

Why Charm Quark?

Heavy flavor quarks

- · Produced in early stage: probe properties of medium
- \cdot Thermalization is delayed by a factor of ~5-10 (m_Q/T)
- Much less gluon radiation $(m_q/m_c)^4$;
- Momentum transfer from thermal medium is small compared to heavy quark momentum: Brownian Motion approach;

Why Elliptic Flow (v₂)?

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos\left[n\left(\phi - \Psi_{n}\right)\right]\right)$$

- · Elliptic flow (v_2): the second term of Fourier expansion
- V₂ in non-central heavy-ion collisions suggests hydrodynamic behavior of a strongly interacting matter.
- · Charm hadron v_2 provides insights into transport properties of sQGP

Science, 298, pp. 2179-2182 (2002) J. E. Thomas, et al.

- \cdot Motivation
- STAR detector with HFT (Heavy Flavor Tracker)
- $\cdot D^{0}$ reconstruction
- · $D^{0} v_{2}$: event plane and two-particle correlation
- · Discussion
- Summary and outlook

STAR Detector

HFT (Heavy Flavor Tracker)

SSD – Silicon Strip
Detector (r~22cm)
IST – Intermediate Silicon
Tracker (r~14cm)
PXL – Pixel Detector (r~2.8 & 8cm)

Direct topological reconstruction of charm hadrons (e.g. D^0 ->K π , c τ ~120 µm)

HFT Performance

- Good DCA (Distance of Closest Approach) resolution
- · <30 μ m for high p_T tracks

 $K\pi$ invariance mass spectrum with and w/o~HFT

- \cdot Clear D^o signal
- Background rejection by 4 orders of magnitude

- \cdot Motivation
- STAR detector with HFT (Heavy Flavor Tracker)
- $\cdot D^{0}$ reconstruction
- · $D^{0} v_{2}$: event plane and two-particle correlation
- · Discussion
- Summary and outlook

Topological Reconstruction

Improvement with HFT

Significance greatly enhanced compared to previous STAR result (2010+2011)

- \cdot Motivation
- STAR detector with HFT (Heavy Flavor Tracker)
- $\cdot D^{0}$ reconstruction
- · $D^{0} v_{2}$: event plane and two-particle correlation
- Discussion
- Summary and outlook

Event Plane Method

Event plane v_2

$$v_2 = v_2^{obs} \times \left\langle \frac{1}{\text{E.P. Resolution}} \right\rangle$$

- Fit with $N(1+2v_2^{obs}cos(2(\varphi-\Psi)))$
- $\Delta \eta$ ~0.15 between D^o and event plane is required to suppress the non-flow effect

Two-particle Correlation

Correlation v_2

$$v_{2}^{Dh} = \langle \cos(2\varphi_{D} - 2\psi_{h}) \rangle$$

$$\approx \langle \cos(2\varphi_{D} - 2\psi_{PP}) \rangle \bullet \langle \cos(2\varphi_{hadron} - 2\psi_{PP}) \rangle$$

$$= v_{2}^{D} \bullet v_{2}^{h}$$

$$\langle \cos(2\varphi_{h1} - 2\varphi_{h2}) \rangle = (v_{2}^{h})^{2}$$

$$Stackground Extraction using side-band$$

$$N_{cand} = N_{signal} + N_{bkg} \Rightarrow \frac{dN_{cand}}{d\varphi} = \frac{dN_{signal}}{d\varphi} + \frac{dN_{bkg}}{d\varphi}$$

$$N_{cand} [1 + 2v_{2}^{cand} \cos(2\varphi)] =$$

$$N_{signal} [1 + 2v_{2}^{signal} \cos(2\varphi)] + N_{bkg} [1 + 2v_{2}^{bkg} \cos(2\varphi)]$$

$$v_{2}^{signal} = \frac{N_{cand} \bullet v_{2}^{cand} - N_{bkg} \bullet v_{2}^{bkg}}{N_{signal}}$$

$$Transverse Momentum p_{T} (GeV/c)$$

Systematic Uncertainty

- **Event Plane Method:**
 - · Background uncertainty: fitting range and side bands
- Two-particle Correlation Method:
 - · Yield fitting function
 - Background uncertainty: like-sign and unlike-sign, side bands

p⊤ (GeV/c)	1.51	2.46	3.43	4.36	5.95
Event plane method	0.0017	0.0131	0.0077	0.0057	0.0343
Two-particle correlation	0.0268	0.0098	0.0243	0.0629	0.1095

Systematic uncertainty for D⁰ v₂ in different pT bins

Non-flow contribution is estimated using D^{*±}-hadron correlation in p+p collisions at 200GeV

 $D^0 v_2$ is above zero for $p_T>2GeV/c (\chi^2/n.d.f.=17.5/4)$

٠

B->D feed down is very small at RHIC energies (<5% relative contribution)

- \cdot Motivation
- STAR detector with HFT (Heavy Flavor Tracker)
- $\cdot D^{0}$ reconstruction
- · $D^{0} v_{2}$: event plane and two-particle correlation
- Discussion
- Summary and outlook

Discussion #1: Compare With Light Flavor

Plot $v_2/NCQ vs. (m_T-m_0)/NCQ$

An indication that v_2 of D^0 is smaller than light hadrons => Charm is not fully thermalized with the medium.

Discussion #2: Compare With Models

Different models:

SUBATECH: pQCD + hard thermal loop

 $\cdot\,$ P. B. Gossiaux, J. Aichelin, T. Gousset, and V. Guiho, Strangeness in quark matter

TAMU: T-matrix, non-perturbative model with internal energy potential

· M. He, R. J. Fries, and R. Rapp, Phys. Rev. C86, 014903 (2012)

Duke: free constant D_s , fit to LHC high $p_T R_{AA}$ · S. Cao, G.-Y. Qin, and S. A. Bass, Phys. Rev. C88, 044907 (2013)

PHSD: Parton-Hadron-String Dynamics, a

transport model

 H. Berrehrah, P. B. Gossiaux, J. Aichelin, W. Cassing, J. M. Torres-Rincon, and E.Bratkovskaya, Phys. Rev. C90, 051901 (2014)

Charm quark exhibits finite collective behavior

compare with	$2\pi TD_s$ (spatial diffusion coefficient)	χ2/n.d.f.	
SUBATECH	2-4	2.8 / 5	
TAMU c quark diff.	2-7	2.1 / 5	
TAMU no c quark diff.	_	7.4 / 5	
DUKE	7	9.3 / 5	
PHSD	5-12	0.46 / 4	

- \cdot Motivation
- STAR detector with HFT (Heavy Flavor Tracker)
- $\cdot D^{0}$ reconstruction
- · $D^{0} v_{2}$: event plane and two-particle correlation
- Discussion
- Summary and outlook

Outlook

Run 14:

· Results with full statistics available soon

Run 15:

- \cdot Aluminum cables for inner layer of PXL
- · p+p (for R_{AA} reference) and p+A (for CNM effect) data sets with HFT

Run 16:

- \cdot Aluminum cables for inner layer of PXL
- Factor 2 -3 improvement for D⁰ significance @ 1 GeV allows measuring centrality dependence for v₂

Year	System	Events(MB)			
RUN 14					
	Au+Au	1.2 B			
RUn 15					
	p+p	1 B			
	p+Au	0.6 B			
Future					
Run 16					
	Au+Au	2 B			

Summary

- $\cdot\,$ Finite D $^{\!0}\,\nu_2$ is measured within STAR using Heavy Flavor Tracker
- \cdot Comparison between measured D $^{\rm 0}$ v_2 and model calculations suggests collective behavior of charm quarks
- \cdot Smaller D⁰ v₂ (than light quarks) indicates that charm quarks may not be fully thermalized
- $\cdot\,$ Theoretical calculations with $2\pi TD_s$ ~2-12 can reproduce our D^0 v_2 result.

Thank you!

Backups

$\cdot~D^0~R_{AA}$ compare with models

- Side-band definition
- · Topological cuts
- Models details

D⁰ R_{AA} Compare With Models

Side-band

Side-band: (-90,-40) & (40,90)

Topological cut

$D^0 p_T$ range (GeV)	(0,1)	(1,2)	(2,3)	(3,5)	(5,10)
Kaon $p_T > (\text{GeV})$	0.6	0.6	0.6	0.6	0.6
Pion $p_T > (\text{GeV})$	0.6	0.6	0.6	0.6	0.6
decay length $> (cm)$	0.0145	0.0181	0.0212	0.0247	0.0259
$DCA(K,\pi) < (cm)$	0.0084	0.0066	0.0057	0.0050	0.0060
DCA(K, PV) < (cm)	0.0103	0.0091	0.0095	0.0079	0.0058
$DCA(\pi, PV) < (cm)$	0.0110	0.0111	0.0086	0.0081	0.0062
DCA(V0, PV) < (cm)	0.0061	0.0049	0.0038	0.0038	0.0040

SUBATECH

- pQCD+HTL calculation with latest
 EPOS3 initial conditions
 - · $L=(L_{QCD}+L_{HTL})+\Delta L_{HTL}$
- Diffusion coefficient extracted from calculations $2\pi T \times D \sim 2-4$
- Good agreement between model and experiment for both v_2 and R_{AA} in entire p_T range (χ^2 /n.d.f. = 2.8/5)

Theory: arXiv:1506.03981 (2015) & private comm. STAR: PRL 113 (2014) 142301

TAMU

- Full T-matrix treatment, non-perturbative model with internal energy potential
- · Diffusion coefficient extracted from calculation $2\pi T \times D = 2-7$
- \cdot Good agreement with D⁰ meson v₂ at low p_T, data favors model including c quark diffusion in the medium
 - (w/c diff. $\chi^2/n.d.f. = 1.8/5$)
 - (w/o c diff. χ^2 /n.d.f. = 7.4/5)

Theory: arXiv:1506.03981 (2015) & private comm. STAR: PRL 113 (2014) 142301

DUKE Model

- Diffusion coefficient is a free parameter, fixed by fitting to R_{AA} at high p_T
- Input value for diffusion coefficient
 2πT x D = 7 fixed to fit LHC
 results
- Model with $2\pi T \times D = 7$ doesn't describe the magnitude of v_2 in experimental data

Theory: arXiv:1505.01413 & private comm. STAR: PRL 113 (2014) 142301

•

