

MOTIVATION

- STAR Beam Energy Scan (BES-I) results suggest a softening of the equation of state (EOS) which hints at critical fluctuations
- To help clarify these hints, STAR needs to access energies below 7.7 GeV where we expect no QGP formation
- At these lower energies the luminosity of RHIC is too low, making it impractical to take data in collider mode

THE GOALS OF BEAM ENERGY SCAN (BES)-I:

- 1) OBSERVE THE DISAPPEARANCE OF QGP SIGNATURES
- 2) FIND EVIDENCE OF THE POSSIBLE FIRST-ORDER PHASE TRANSITION
- 3) FIND THE POSSIBLE CRITICAL POINT

DIRECTED FLOW

• Directed flow describes the sideward motion of the particles within the reaction plane

• Generated during the nuclear passage time $(2R/\gamma \approx 0.1 \text{ fm/}c)$

Therefore probes the very earliest stage of the collision dynamics

$$v_1 = \langle \cos(\phi - \Psi_{\rm RP}) \rangle$$

STAR

PREVIOUS RHIC RUNS BELOW NOMINAL INJECTION ENERGY

- 2001: Au+Au 19.6 GeV (Test Run) 100k events
- 2005: Cu+Cu 22.4 GeV (Test Run) 250k events
- 2008: Au+Au 9.2 GeV (Test Run) 3k events
- 2010: Au+Au 7.7 GeV (Physics) 5M events, Au+Au 11.5 GeV 2010 (Physics) 8M events, Au+Au 5.5 GeV 2010 (Test Run) - 0 events
- 2011: Au+Au 19.6 GeV (Physics) 36M events, Au+Au 27 GeV (Physics) 70M events
- 2014: Au+Au 14.5 GeV (Physics) 20M events, Fixed Target (FXT) 3.9 GeV (taken concurrently with Au+Au 14.5 GeV)
- 2015: Au+Au 4.5 GeV (Test Run)

STAR

√S_{NN} = 3.9 GEV AU+AU TEST RUN

Particle Identification (PID) with STAR Time Projection Chamber (TPC) and Time of Flight (TOF) - outstanding for FXT

GOLD TARGET IN RUN 14

 The target foil was held 2 cm below of the beam axis

• The foil is 1 mm thick

David Tlusty

Winter Workshop on Nuclear Dynamics 2017

AU + AU √S_{NN} =4.5 GEV 2015 TEST RUN PERFORMANCE

Beam energy: 9.8 GeV, ~8.9 AGeV

- May 20th, 2015, 4
 hour test run (Au +Au)
- 6 bunches, 1.35M
 events collected in
 Au+Au (1M
 collected in last 30
 minutes)
- beam lowered to graze the top edge of the target

LAMBDA AND KOS RECONSTRUCTION

- hadronic channels $K^0_S \to \pi^+\pi^-$, $\Lambda \to p\pi^-$
- pions and protons identified by their dE/dx in TPC
- secondary vertex determined from tracks reconstructed in TPC (magnetic field 0.5T)
 - ▶ path length for $\Lambda = 7.8$ cm, $K^0_S = 2.7$ cm, topological cuts used to reduce combinatorial background
- $-2 < \eta < -1.2$ separation from the event plane

Excellent suppression of combinatorial background Mass resolution of peaks consistent with collider data

EVENT PLANE RECONSTRUCTION

IN THE FIRST HARMONIC

- Using TPC identified protons and deuterons coming from the primary vertex with $-0.7 < \eta < 0$
- protons dominate the yield at higher p_T

$$Q_x = \sum_{i} (y_{\text{lab}} - y_{\text{c.m.}}) p_T^{(i)} \cos \phi^{(i)}$$

Event Flow Vectors:

$$Q_y = \sum_{i} (y_{\text{lab}} - y_{\text{c.m.}}) p_T^{(i)} \sin \phi^{(i)}$$

Centering of Event Flow Vectors:

$$Q_x^{
m centered} = Q_x - \left\langle \frac{Q_x}{N_{
m trk}} \right\rangle N_{
m trk}$$

$$Q_y^{
m centered} = Q_y - \left\langle \frac{Q_y}{N_{
m trk}} \right\rangle N_{
m trk}$$

$$N_{\mathrm{trk}} \geq 5$$

Event Plane Angle Calculation:

$$\Psi = \tan^{-1} \left(\frac{Q_y^{\text{centered}}}{Q_x^{\text{centered}}} \right)$$

EVENT PLANE RECONSTRUCTION

where Fourier coefficients $\nu_1, ..., \nu_2$ were obtained by fiting

$$f(\Psi) = A[1 + 2\nu_1\cos(\Psi) + 2\nu_2\sin(\Psi)$$

$$+ 2\nu_3\cos(2\Psi) + 2\nu_4\cos(2\Psi)$$

$$+ 2\nu_5\cos(4\Psi) + 2\nu_6\sin(4\Psi)]$$
 to Ψ distribution

Event Plane Angle Correction:

$$\Psi^{\text{corrected}} = \Psi + 2\nu_1 \sin(\Psi) - 2\nu_2 \cos(\Psi) + \nu_3 \sin(2\Psi) - \nu_4 \cos(2\Psi) + \frac{1}{2}\nu_5 \sin(4\Psi) - \frac{1}{2}\nu_6 \cos(4\Psi)$$

EVENT PLANE RESOLUTION

Minimum number of tracks for each subevent was 5

$$\langle \cos(\Psi^A - \Psi^B) \rangle = \sqrt{\frac{\langle \cos(\Psi^A - \Psi^B) \rangle \langle \cos(\Psi^A - \Psi^C) \rangle}{\langle \cos(\Psi^B - \Psi^C) \rangle}} = 0.85 \pm 0.03, 0.79 \pm 0.02, 0.81 \pm 0.03$$

K⁰_S DIRECTED FLOW (10-25%)

$$v_1^{\rm observed} = \langle \cos(\phi - \Psi_{\rm corrected}^A) \rangle$$
 parametrization: f(y) = p0(y + 1.52) - v₁ always 0 at y_{mid}

- Suggests negative value, as expected
- Result of the fitting to side band is consistent to zero $(-0.01\pm0.03$ corrected on EP resolution).

The result corrected on the event plane resolution:

 -0.023 ± 0.018

A DIRECTED FLOW (0-30%)

$$v_1^{
m observed} = \langle \cos(\phi - \Psi_{
m corrected}^A) \rangle$$
 parametrization: f(y) = p0(y + 1.52) - v₁ always 0 at y_{mid}

The result corrected on the event plane resolution:

 0.082 ± 0.009

Substantial positive flow

A DIRECTED FLOW(10-30%)

$$v_1^{
m observed} = \langle \cos(\phi - \Psi_{
m corrected}^A) \rangle$$
 par

parametrization:
$$f(y) = p0(y + 1.52) - v_1$$
 always 0 at y_{mid}

- Results stable within statistical uncertainties
- Substantial positive flow
- Non-zero flow of $p\pi^-$ pairs outside the Λ peak

The result corrected on the event plane resolution:

 0.094 ± 0.015

COMPARISON WITH E895 AND STAR BES-I

- v_1 of Both K_S^0 and Λ follow the trend from the STAR Beam Energy Scan.
- v_1 of Λ does not follow the E895 trend, but the acceptance for the E895 data points are different from the STAR data and E895 shows $\langle p_x \rangle$ instead of v_1

FUTURE UPGRADES

- Inner TPC (ITPC) upgrade
- Event Plane detector (EPD)
- Endcap TOF (ETOF)

- Physics goals include looking for a 1st order phase transition (e.g. $dv_1/dy...$) and clarifying possible evidence for a critical point (eg. kurtosis...)
- Need 1-2 days of dedicated fixed target running at each energy to collect sufficient statistics (FXT program is capable to collect ~50M events per day)

EVENT PLANE DETECTOR

- Large forward eta coverage $2.1 < |\eta| < 5.1$ compared to TPC ($|\eta| < 1.0$),
- independent measurement of a reaction plane with great resolution
- improve centrality determination and flow harmonic measurements

ETOF + ITPC IN FIXED TARGET

Increased acceptance for tracking and PID allows the FXT program to extend its energy range to
 7.7 GeV allowing comparisons with collider analyses.

SUMMARY

- STAR is a typical collider experiment but it can take data in the fixed target mode
- First directed flow v_1 results of 2015 STAR Fixed target test run were presented. v_1 of Both K_S^0 and Λ follow the trend from the STAR Beam Energy Scan.
- The detector upgrades will allow to run in both collider and fixed target modes at $\sqrt{s_{NN}} = 7.7$ GeV making a comparison with collider mode analyses at the same energy possible.
- The FXT program extends BES-II down to $\sqrt{s_{NN}}$ = 3.0 GeV
- The STAR Fixed Target will make significant contribution to the STAR
 Beam Energy Scan II program in 2019 and 2020
- Many more FXT results coming see Kathryn Meehan's talk at Quark Matter 2017 (Wednesday, 2:20pm)

THANKYOU

BACKUP SLIDES

FIT PARAMETERS FROM VARIOUS FIT RANGES

K ⁰ S	(10-25%)
------------------	----------

\	(0-30%)	

Fit region	parameter	Value	Error	Fit region	parameter	Value	Error
-1.521.0	p0	0.001	0.017	-1.521.0	p0	0.073	0.011
-1.520.8	p0	-0.025	0.013	-1.520.8	p0	0.074	0.008
-1.520.6	p0	-0.018	0.012	-1.520.6	p0	0.066	0.007
-1.520.4	p0	-0.019	0.011	-1.520.4	p0	0.064	0.006

A (10-30%)

Fit region	parameter	Value	Error
-1.521.0	p0	0.104	0.021
-1.520.8	p0	0.085	0.014
-1.520.6	p0	0.077	0.012
-1.520.4	р0	0.076	0.011