The 35th Winter Workshop on Nuclear Dynamics (WWND 2019) 6-12 January 2019, Beaver Creek

STAR

Measurements of low-p_T e⁺e⁻ pairs and J/ ψ in heavy-ion collisions at STAR

Shuai Yang (for the STAR Collaboration) Brookhaven National Laboratory

Office of Science

Dileptons - electromagnetic probe

Penetrating probe
 Direct information about the medium created in heavy-ion collisions

STAR

Dileptons - electromagnetic probe **STAR**

Quarkonia - heavy flavor probe

- Color-screening in QGP: the quark-antiquark binding potential is screened by the color charges of the surrounding light quarks and gluons -> dissociation
 - J/ψ suppression was proposed a direct proof of QGP formation [T. Matsui and H. Satz, PLB 178 (1986) 416]

 $r_{q\bar{q}} \sim 1 / E_{binding} > r_D \sim 1 / T$

Quarkonia - heavy flavor probe

- Color-screening in QGP: the quark-antiquark binding potential is screened by the color charges of the surrounding light quarks and gluons -> dissociation
 - J/ ψ suppression was proposed a direct proof of QGP formation [T. Matsui and H. Satz,

PLB 178 (1986) 416]

$$r_{q\bar{q}} \sim 1 / E_{binding} > r_D \sim 1 / T$$

Shuai Yang

Photon interactions

- \succ Large quasi-real photon flux $\propto Z^2$
- Photon interactions
 - Photon-photon interaction (dilepton...) $\propto Z^4$
 - Photonuclear interaction (vector mesons) $\propto Z^2$
 - ✓Coherent & Incoherent
- \succ Conventionally only studied in UPC (b>2R_A)

Shuai Yang

WWND2019, Beaver Creek

Features of photon interactions

STAR, PRC 70 (2004) 031902

•

•

Features of photon interactions

STAR

Anomalous J/ ψ enhancement at LHC $_{ m ST}$

 \succ Significant enhancement at low p_T in peripheral Pb+Pb collisions

Shuai Yang

Anomalous J/ ψ enhancement at LHC $_{ m ST}$

➢ Significant enhancement at low p_T in peripheral Pb+Pb collisions
 ➢ Qualitatively explained by coherent photonuclear production mechanism

Shuai Yang

The STAR detector

> Midrapidity, large acceptance: $|\eta| < 1$, $0 < \phi < 2\pi$

- Time Projection Chamber: tracking, momenta, and energy loss
- Time-Of-Flight: velocity Shuai Yang

Barrel Electromagnetic Calorimeter: trigger on and identify high-p_T electrons

Low-p_T e⁺e⁻ invariant mass spectra

p_T spectra in 60-80% collisions

Excess concentrated below $p_T \approx 0.15$ GeV/c

> Data are consistent with hadronic cocktail for $p_T > 0.15$ GeV/c

Shuai Yang

Origin of the low- p_T enhancement

STAR, PRL 121 (2018) 132301 R. Rapp, PRC 63 (2001) 054907

- Can not be explained by in-medium broadened p model
- Compared to hadronic production, excess yield exhibits a much weaker centrality dependence

Need additional source(s)

Shuai Yang

Models of two-photon interaction

- Photon is treated as real
- Weizsäcker–Williams method to estimate photon flux
- No impact parameter dependence of \mathbf{p}_{T} spectrum for the dilepton from initial photon-photon interaction

Models based on EPA method

- Model by Zha et al. [W. Zha et al., PLB 781 (2018) 182]
 - \checkmark Use Woods-Saxon charge distribution in nucleus for photon flux estimation
 - \checkmark Consider dilepton production insides nucleus
- STARlight [S. Klein, PRC 97 (2018) 054903]
 - \checkmark Ignore dilepton production insides nucleus
- STARlight with next-to-leading order correction and hot medium effects -Coulomb scattering [S. Klein et al., arxiv: 1811.05519]

Model based on external classical field approach [M. Vidovic et al., PRC 47 (1993) 2308]

- Model by Zha et al. [W. Zha et al., arxiv: 1812.02820]
 - ✓ Consider impact parameter dependence of p_T spectrum for the dilepton from initial photon-photon interaction

Shuai Yang

Origin of the low- p_T enhancement

Shuai Yang

WWND2019, Beaver Creek

Shuai Yang

WWND2019, Beaver Creek

p_T^2 distributions in 60-80% collisions **STAR**

STAR, PRL 121 (2018) 132301

- > Models fail to describe p_T^2 distributions
- > Employ $\sqrt{\langle p_T^2 \rangle}$ to quantify the discrepancy between data and models
 - Mass and collision species dependence
 - Data are systematically higher than models

Shuai Yang

p_T^2 distributions in 60-80% collisions **STAR**

STAR, PRL 121 (2018) 132301

- > Models fail to describe p_T^2 distributions
- \succ Employ $\sqrt{< p_T^2 >}$ to quantify the discrepancy between data and models
 - Mass and collision species dependence
 - Data are systematically higher than models
- Model of Zha describes data when including effects of magnetic field on the produced pairs
 - Indication the existence of strong magnetic field trapped in QGP?

Impact parameter dependence of initial two-photon interaction [W. Zha et al., arxiv: 1812.02820]

Strong impact parameter dependence

Impact parameter dependence of initial two-photon interaction [W. Zha et al., arxiv: 1812.02820]

Strong impact parameter dependence Can describe STAR and ATLAS data simultaneously

• ATLAS data can also be qualitatively described by EPA model incorporating Coulomb scattering [S. Klein et al., arxiv: 1811.05519]

Critical for the study of possible hot medium effects

Shuai Yang

WWND2019, Beaver Creek

STAR

Low-p_T J/ ψ at STAR

- ➢ Significant enhancement at low p_T (< 0.1 GeV/c) in 40-80% collisions</p>
- No significant difference between Au+Au and U+U collisions

Shuai Yang

WWND2019, Beaver Creek

Excess yields of low-p $_{
m T}$ J/ ψ

No significant centrality dependence of the excess yield

• Yield of low-p_T J/ ψ from hadronic production is expected to increase dramatically with N_{part}

Shuai Yang

Excess yields of low-p_T J/ ψ

No significant centrality dependence of the excess yield

• Yield of low-p_T J/ ψ from hadronic production is expected to increase dramatically with N_{part}

Qualitatively described by photonuclear interaction

- N+S and S+N scenarios can describe the data reasonably well
 - Measurements in central collisions are critical

Shuai Yang

t distribution of J/ ψ

Similar structure to that in UPCs

- Indication of interference [S. Klein, PRL 84 (2000) 2330]
- Similar slope parameter for exponential fit
 - ✓ Slope = 196 (GeV/c)⁻² in UPC case
 - ✓ Slope = 199 ± 31 (GeV/c)⁻² (w/o the first point) in 40-80% collisions

Shuai Yang

WWND2019, Beaver Creek

Isobaric collisions

- \succ ⁹⁶₄₄Ru+⁹⁶₄₄Ru vs. ⁹⁶₄₀Zr+⁹⁶₄₀Zr
 - Charge differs by 10%, everything else is almost the same
 - Large statistics taken by STAR in 2018: 3.1B vs. 1.5B (goal) minimum-bias events
 - Rapid (daily) switching between Ru and Zr: minimize systematic uncertainty

Further constrain the photon interactions and their possible impacts on emerging phenomena in heavy-ion collisions

Shuai Yang

Summary

\succ Low-p_T e⁺e⁻ pair production in heavy-ion collisions

\blacktriangleright Low-p_T J/ ψ production in heavy-ion collisions

Explore photon interactions in isobaric collisions

Shuai Yang

WWND2019, Beaver Creek

Backup

Shuai Yang

Coherent photons as "partons" in heavy-ion collisions

Coherent limitation: $Q^2 \leq 1/R^2 \Rightarrow$ quasi-real ! Photon four momentum: $q^u = (\omega, \ \vec{q}_T, \omega/\gamma)$ $Q^2 = \frac{\omega^2}{\gamma^2} + q_T^2$ $\omega \leq \omega_{max} \sim \frac{\gamma}{R}$ $q_T \leq 1/R$

• View photons as "partons" being present with fast moving ions!

The extent of photons swarming about the ions:

The radius of nuclear matter $R_{Nuc} \sim 6.3$ fm (Au) $R_{photons} >> R_{Nuc}$

Take the photoproduction of $\rho~$ (Au+Au 200 GeV) in UPC as example: $<\!\!R_{producton}\!\!>\sim$ 40 fm

Shuai Yang

Model calculation with impact parameter dependence

$$\begin{split} \sigma &= 16 \frac{Z^4 e^4}{(4\pi)^2} \int d^2 b \int \frac{dw_1}{w_1} \frac{dw_2}{w_2} \frac{d^2 k_{1\perp}}{(2\pi)^2} \frac{d^2 k_{2\perp}}{(2\pi)^2} \frac{d^2 q_{\perp}}{(2\pi)^2} \xrightarrow{\text{Integration over b}} \sigma = 16 \frac{Z^4 e^4}{(4\pi)^2} \int \frac{dw_1}{w_1} \frac{dw_2}{w_2} \frac{d^2 k_{1\perp}}{(2\pi)^2} \frac{d^2 k_{2\perp}}{(2\pi)^2} \left| \frac{F(-k_1^2)}{k_1^2} \right|^2 \\ &\times \frac{F(-k_1^2)}{k_1^2} \frac{F(-k_2^2)}{k_2^2} \frac{F^*(-k_1'^2)}{k_1'^2} \frac{F^*(-k_2'^2)}{k_2'^2} e^{-i\vec{b}\cdot\vec{q}_{\perp}} \qquad (2) \qquad \qquad \times \left| \frac{F(-k_2^2)}{k_2^2} \right|^2 k_{1\perp}^2 k_{2\perp}^2 \sigma(w_1, w_2) \\ &\times \left[(\vec{k}_{1\perp} \cdot \vec{k}_{2\perp}) (\vec{k}_{1\perp}' \cdot \vec{k}_{2\perp}') \sigma_s(w_1, w_2) \right] \end{split}$$

where the four momenta of photons are

$$k_{1} = (w_{1}, k_{1\perp}, \frac{w_{1}}{v}), k_{2} = (w_{2}, P_{\perp} - k_{1\perp}, \frac{w_{2}}{v})$$

$$w_{1} = \frac{1}{2}(P_{0} + vP_{z}), w_{2} = \frac{1}{2}(P_{0} - vP_{z})$$

$$k_{2\perp} = P_{\perp} - k_{1\perp}, q_{\perp} = k_{1\perp} - k'_{1\perp}$$

$$k'_{1} = (w_{1}, k_{1\perp} - q_{\perp}, w_{1}/v)$$

$$k'_{2} = (w_{2}, k_{2\perp} - q_{\perp}, w_{2}/v)$$
(3)

> EPA expression commonly used in traditional photon-photon models

 $\times \left| \frac{F(-k_2^2)}{k_2^2} \right|^2 k_{1\perp}^2 k_{2\perp}^2 \sigma(w_1, w_2)$

W. Zha et al., arxiv: 1812.02820

WWND2019, Beaver Creek

(6)

Dimuon pairs from two-photon interaction at ATLAS

Indication of Coulomb scattering? [S. Klein et al., arxiv: 1811.05519]

Shuai Yang

WWND2019, Beaver Creek

STAR

Sensitivity to residual magnetic field?

- To account for the effect of the time-dependent magnetic field on average, the model assumes that all the e⁺e⁻ pairs traverse 1 fm through a magnetic field of 10¹⁴ T perpendicular to the beam line
 - The net effect of this approach is close to $\int eB(t)cdt = e\overline{B}L$
 - $e\overline{B}L \approx 30$ MeV/c, the extreme pair p_T increase: $2e\overline{B}L \approx 60$ MeV/c Shuai Yang WWND2019, Beaver Creek