Global and local polarization of Λ hyperons in Au+Au collisions from STAR

Takafumi Niida
for the STAR Collaboration

WAYNE STATE UNIVERSITY

The 35th Winter Workshop on Nuclear Dynamics
@Beaver Creek Resort, CO
Important features in non-central heavy-ion collisions

Strong magnetic field

\[B \sim 10^{13} \, \text{T} \]
\[(eB \sim \text{MeV}^2 \, (\tau = 0.2 \, \text{fm})) \]

Orbital angular momentum

\[L \sim 10^5 \hbar \]

→ Chiral magnetic effect
Chiral magnetic wave

→ Vorticity and particle polarization
Chiral vortical effect

In non-central collisions, the initial collective longitudinal flow velocity depends on x.

\[\omega_y = \frac{1}{2} (\nabla \times v)_y \approx -\frac{1}{2} \frac{\partial v_z}{\partial x} \]
Global polarization

- Non-zero angular momentum transfers to the spin degrees of freedom (polarization)
 - Particles’ and anti-particles’ spins are aligned with angular momentum L

- Magnetic field align particle’s spin
 - Particles’ and antiparticles’ spins are aligned oppositely along B due to the opposite sign of magnetic moment
STAR Detectors

- Full azimuthal and large rapidity coverage
- Excellent particle identification

TPC dE/dx vs momentum/charge

TOF $1/\beta$ vs momentum/charge
How to measure the polarization?

Parity-violating decay of hyperons

Daughter baryon is preferentially emitted in the direction of hyperon’s spin (opposite for anti-particle)

\[
\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H \mathbf{P}_H \cdot \mathbf{p}_p^* \right)
\]

\(\mathbf{P}_H \): Λ polarization
\(\mathbf{p}_p^* \): proton momentum in the Λ rest frame
\(\alpha_H \): Λ decay parameter
(\(\alpha_\Lambda = -\bar{\alpha}_\Lambda = 0.642 \pm 0.013 \))

\(\Lambda \to p + \pi^- \)
(BR: 63.9%, \(c \tau \approx 7.9 \) cm)

Projection onto the transverse plane

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards)

- S. Voloshin and TN, PRC94.021901(R)(2016)

Ψ₁: azimuthal angle of \(b \)
\(\phi_p^* \): \(\phi \) of daughter proton in Λ rest frame

\(P_H = \frac{8}{\pi \alpha_H} \frac{\langle \sin(\Psi_1 - \phi_p^*) \rangle}{\text{Res}(\Psi_1)} \)

ZDC-SMD

C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)
Signal extraction with Λ hyperons

\[P_H = \frac{8}{\pi \alpha_H} \frac{\langle \sin(\Psi_1 - \phi_p^*) \rangle}{\text{Res}(\Psi_1)} \]

\[\langle \sin(\Psi_1 - \phi_p^*) \rangle^{\text{obs}} = (1 - f^B_{\text{BG}}(M_{\text{inv}}))\langle \sin(\Psi_1 - \phi_p^*) \rangle^{\text{BG}} + f^B_{\text{BG}}(M_{\text{inv}})\langle \sin(\Psi_1 - \phi_p^*) \rangle^{\text{BG}} \]

\[\alpha_H = -\alpha_{\bar{H}} \]

STAR, PRC98, 014910 (2018)
First observation of fluid vortices in HIC

Positive polarization signal at lower energies!
- polarization looks to increase in lower energies
- anti-Λ is systematically larger than Λ

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

\[\omega = (P_\Lambda + P_{\bar{\Lambda}}) \frac{k_B T}{\hbar} \]
\[\sim 0.02-0.09 \text{ fm}^{-1} \]
\[\sim 0.6-2.7 \times 10^{22} \text{s}^{-1} \] (T=160 MeV)

The most vortical fluid ever observed!
Possible probe of magnetic field

Extracted Physical Parameters

• Significant vorticity signal
 – Hints at falling with energy, despite increasing J
 – \(\sigma \) average for 7.7-39 GeV

• Magnetic field
 – Positive value, \(\sigma \) average for 7.7-39 GeV

\[P = \Lambda \frac{B}{\mu_N} \]

\[B = (P_\Lambda - \bar{P})k_BT/\mu_N \]

\(\approx 5.0 \times 10^{13} \ [\text{Tesla}] \)

\(\mu_N : \Lambda \) magnetic moment

Extracted B-field is close to our expectation.
Need more data with better precision → BES-II and Isobaric collisions

Positive signal at $\sqrt{s_{NN}} = 200$ GeV

$P_H(\Lambda) \ [%] = 0.277 \pm 0.040\text{(stat)} \pm 0.039\text{(sys)}$

$P_H(\bar{\Lambda}) \ [%] = 0.240 \pm 0.045\text{(stat)} \pm 0.061\text{(sys)}$

- 5-7σ significance, comparable to the combined result of 7.7-39 GeV

- Feed-down \sim15%-20% reduction of P_H (model-dependent)

Becattini, Karpenko, Lisa, Upps, and Voloshin, PRC95.054902 (2017)

UrQMD+vHLLE: I. Karpenko and F. Becattini, EPJC(2017)77:213
Centrality dependence of P_H

In most central collision \rightarrow no initial angular momentum
As expected, the polarization decreases in more central collisions

STAR Au+Au $\sqrt{s_{NN}} = 200$ GeV
$0 < p_T < 6$ GeV/c
$|\eta| < 1$

AMPT model, Y. Jiang et al., PRC94, 044910 (2016)

0.12
0.10
0.08
0.06
0.04
0.02
0.00
0.12
0.10
0.08
0.06
0.04
0.02
0.00

| (fm⁻¹)

Time (fm/c)

1 fm
3 fm
5 fm
7 fm
9 fm

$|\langle \omega_y \rangle |$ (fm⁻¹)

0
2
4
6
8

Peripheral
Central
dependence of P_H

- Shear flow structure/initial flow velocity would be stronger in forward/backward region
- Expect rapidity dependence of the polarization

I. Karpenko and F. Becattini, EPJC(2017)77:213

The data do not show significant η dependence
- Maybe due to baryon transparency at higher energy
- Also due to event-by-event C.M. fluctuations
\(p_T \) dependence of \(P_H \)

- No significant \(p_T \) dependence, as expected from the initial angular momentum of the system.
- Hydrodynamic model underestimates the data. Initial conditions affect the magnitude and dependence on \(p_T \).

3D viscous hydrodynamic model with two initial conditions (ICs)
- UrQMD IC
- Glauber with source tilt IC

F. Becattini and I. Karpenko, PRL120.012302, 2018
Azimuthal angle dependence of P_H

- Larger polarization in in-plane than in out-of-plane
- Opposite to hydrodynamic model! (larger in out-of-plane)

I. Karpenko and F. Becattini, EPJC(2017)77:213
A polarization vs. charge asymmetry?

Chiral Separation Effect

B-field + massless quarks + non-zero $\mu_v \rightarrow$ axial current J_5

(spin alignment + spin and momentum in (anti)parallel for RH(LH) quarks)

- Λ polarization may have a contribution from the axial current J_5 induced by B-field (Chiral Separation Effect), S. Shlichting and S. Voloshin
- Use charge asymmetry A_{ch} instead of μ_v

$$\mu_v/T \propto \frac{\langle N_+ - N_- \rangle}{\langle N_+ + N_- \rangle} = A_{ch}$$
Λ polarization vs charge asymmetry?

STAR, PRC98, 014910 (2018)

STAR Au+Au $\sqrt{s_{NN}} = 200$ GeV 20%-60%

$|\eta|<1$, $0.5<p_T<6$ GeV/c

\begin{align*}
\Lambda: & \quad 0.097 \pm 0.041 \pm 0.043 \text{ [%]} \\
\bar{\Lambda}: & \quad -0.112 \pm 0.045 \pm 0.102 \text{ [%]}
\end{align*}

Slopes of Λ and anti-Λ seem to be different.
(Statistical significance is $\sim 2\sigma$ level)

Possibly a contribution from the axial current?
Polarization along the beam direction

S. Voloshin, SQM2017
F. Becattini and I. Karpenko, PRL120.012302 (2018)

\[
\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_H \mathbf{P}_H \cdot \mathbf{p}_p^*)
\]

\[
\langle \cos \theta_p^* \rangle = \int \frac{dN}{d\Omega^*} \cos \theta_p^* d\Omega^*
\]

\[
= \alpha_H P_z \langle \cos \theta_p^* \rangle^2
\]

\[
\therefore P_z = \frac{\langle \cos \theta_p^* \rangle}{\alpha_H \langle \cos \theta_p^* \rangle^2}
\]

\[
= \frac{3 \langle \cos \theta_p^* \rangle}{\alpha_H} \quad \text{(if perfect detector)}
\]

\(\alpha_H\): hyperon decay parameter
\(\theta_p^*\): \(\theta\) of daughter proton in \(\Lambda\) rest frame

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

Longitudinal component, \(P_z\), can be expressed with \(\langle \cos \theta_p^* \rangle\).
\(\langle \cos \theta_p^* \rangle^2\) accounts for an acceptance effect.
Polarization along the beam direction

\[
\langle \cos(\theta^*) \rangle
\]

\[Au+Au \sqrt{s_{NN}} = 200 \text{ GeV}\]

10%-60%

STAR Preliminary

- Effect of Ψ_2 resolution is not corrected here

\[\phi-\Psi_2 \text{ [rad]}\]

○ Sine structure as expected from the elliptic flow!

○ Opposite sign to hydrodynamic model and a transport model (AMPT)
 - Hydro model: F. Becattini and I. Karpenko, PRL.120.012302 (2018)

Hydro calculation of P_z
F. Becattini and I. Karpenko, PRL.120.012302 (2018)
Centrality dependence of P_z modulation

- Strong centrality dependence as in v_2
- Similar magnitude to the global polarization
- ~5 times smaller magnitude than the hydro and AMPT with the opposite sign!

$\langle P_z \sin(2\phi-2\Psi) \rangle [%]$

$\sqrt{s_{NN}} = 200$ GeV

STAR preliminary

Λ, $\bar{\Lambda}$

$\langle p_T \rangle$ of $\Lambda \sim 1.4$ GeV/c

$0.5 < p_T < 6$ GeV/c

T. Niida, WWND2019
Sign problem in P_z

Opposite sign to hydrodynamic model and AMPT model
- F. Becattini and I. Karpenko, PRL.120.012302 (2018)
 3D viscous hydrodynamic model with UrQMD initial condition
 assuming a local thermal equilibrium

Same sign as chiral kinetic approach
- Assuming non-equilibrium of spin degree of freedom
- Smaller quark scattering cross section changes the sign

Suggest incomplete thermal equilibrium of spin degree of freedom
as it develops later in time unlike the global polarization?
Contributions to P_z in hydro

I. Karpenko, QM2018

\[S^\mu \propto \varepsilon^{\mu \rho \sigma \tau} \sigma_{\rho \sigma} p_{\tau} = \varepsilon^{\mu \rho \sigma \tau} (\partial_{\rho} \beta_{\sigma}) p_{\tau} = \varepsilon^{\mu \rho \sigma \tau} p_{\tau} \partial_{\rho} \left(\frac{1}{T} \right) u_{\sigma} + \frac{1}{T} 2 [\omega^\mu (u \cdot p) - u^\mu (\omega \cdot p)] + \varepsilon^{\mu \rho \sigma \tau} p_{\tau} A_{\sigma} u_{\rho} \]

\[\text{grad}T \quad \text{temperature gradient} \quad \text{“NR vorticity”} \quad \text{acceleration} \]

Longitudinal quadrupole f_2:

P_z dominated by temperature gradient and relativistic term, but not by kinematic vorticity based on the hydro model.

How small is the kinematic vorticity?
Can we estimate it with the blast-wave model?
Blast-wave model

- Hydro inspired model parameterized with freeze-out condition assuming the longitudinal boost invariance
 - Freeze-out temperature T_f
 - Radial flow rapidity ρ_0 and its modulation ρ_2
 - Source size R_x and R_y
 \[
 \rho(r, \phi_s) = \tilde{r}[\rho_0 + \rho_2 \cos(2\phi_b)]
 \]
 \[
 \tilde{r}(r, \phi_s) = \sqrt{(r \cos \phi_s)^2/R_x^2 + (r \sin \phi_s)^2/R_y^2}
 \]
- Calculate vorticity at the freeze-out using the parameters extracted from spectra, v_2, and HBT fit
 \[
 \langle \omega_z \sin(2\phi) \rangle = \frac{\int d\phi_s \int r dr I_2(\alpha_t)K_1(\beta_t)\omega_z \sin(2\phi_b)}{\int d\phi_s \int r dr I_0(\alpha_t)K_1(\beta_t)}
 \]
 \[
 \omega_z = \frac{1}{2} \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right),
 \]
 u: local flow velocity, l_n, K_n: modified Bessel functions

FIG. 2. Schematic illustration of an elliptical subshell of the source. Here, the source is extended out of the reaction plane ($R_y > R_x$). Arrows represent the direction and magnitude of the flow boost. In this example, $\rho_2 > 0$ [see Eq. (4)].

ϕ_s: azimuthal angle of the source element
ϕ_b: boost angle perpendicular to the elliptical subshell
ω_z and P_z from the BW model

e.g. Blast-wave fit to spectra and v_2

Data:
PHENIX, PRC69.034909 (2004)
PHENIX, PRC93.051902(R) (2016)

Calculated vorticity ω_z shows the sine modulation. Assuming a local thermal equilibrium, z-component of polarization is estimated as follows:

$$P_z \approx \frac{\omega_z}{(2T)}$$
P_z modulation from the BW model

- **AMPT model**
 - opposite sign and 5 times larger in magnitude

- **Blast-wave model**
 - simple estimate for kinematic vorticity
 - similar magnitude to the data
 - inclusion of HBT in the fit affects the sign in peripheral collisions

BW parameters obtained with HBT: STAR, PRC71.044906 (2005)
Summary

- Observation of non-zero Λ global polarization at $\sqrt{s_{\text{NN}}} = 7.7$-$62.4$ GeV, and later at 200 GeV
 - Polarization decreases at higher energies, qualitatively consistent with the models
 - Larger signal in more peripheral collisions
 - Larger signal in in-plane than in out-of-plane, opposite to the hydrodynamic model
 - No significant dependence on p_T and η
 - Charge-asymmetry dependence ($\sim 2\sigma$ level) with a possible relation to the axial current induced by B-field
- Λ polarization along the beam direction at $\sqrt{s_{\text{NN}}} = 200$ GeV
 - Quadrupole structure of the polarization relative to the 2$^{\text{nd}}$-order event plane, as expected from the elliptic flow
 - Strong centrality dependence as in the elliptic flow
 - Sign problem among different models and data, but the blast-wave model predicts the same sign and similar magnitude to the data
Back up
Feed-down effect

- Only ~25% of measured Λ and anti-Λ are primary, while ~60% are feed-down from $\Sigma^* \to \Lambda \pi$, $\Sigma^0 \to \Lambda \gamma$, $\Xi \to \Lambda \pi$

- Polarization of parent particle R is transferred to its daughter Λ

\[S^*_\Lambda = C S^*_R \]

\[\langle S_y \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S}B) \]

Becattini, Karpenko, Lisa, Upsilon, and Voloshin, PRC95.054902 (2017)

\[
\begin{pmatrix}
\omega_c \\
B_c/T
\end{pmatrix} = \left[\frac{2}{3} \sum_R \left(J_{\lambda R} C_{\lambda R} - \frac{1}{3} J_{\Sigma^0 R} C_{\Sigma^0 R} \right) S_R (S_R + 1) \right] \left[\frac{2}{3} \sum_R \left(J_{\lambda R} C_{\lambda R} - \frac{1}{3} J_{\Sigma^0 R} C_{\Sigma^0 R} \right) (S_R + 1) \mu_R \right]^{-1} \begin{pmatrix}
P^\text{meas}_\Lambda \\
P^\text{meas}_\Xi
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>Decay</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity conserving: $^1/2^+ \to ^1/2^+ 0^-$</td>
<td>$-1/3$</td>
</tr>
<tr>
<td>Parity conserving: $^1/2^- \to ^1/2^+ 0^-$</td>
<td>1</td>
</tr>
<tr>
<td>Parity conserving: $^1/2^+ \to ^1/2^+ 0^-$</td>
<td>$1/3$</td>
</tr>
<tr>
<td>Parity-conserving: $^1/2^- \to ^1/2^+ 0^-$</td>
<td>$-1/5$</td>
</tr>
<tr>
<td>$\Sigma^0 \to \Lambda + \pi^0$</td>
<td>$+0.900$</td>
</tr>
<tr>
<td>$\Sigma^- \to \Lambda + \pi^-$</td>
<td>$+0.927$</td>
</tr>
<tr>
<td>$\Sigma^0 \to \Lambda + \gamma$</td>
<td>$-1/3$</td>
</tr>
</tbody>
</table>

15%-20% dilution of primary Λ polarization (model-dependent)
Blast-wave parameterization

\[
r_{\text{max}} = R[1 - a \cos(2\phi_s)],
\]
\[
\rho_t = \rho_{t,\text{max}}[r/r_{\text{max}}(\phi_s)][1 + b \cos(2\phi_s)] \approx \rho_{t,\text{max}}(r/R)[1 + (a + b) \cos(2\phi_s)].
\]
\[
\omega_z = 1/2(\nabla \times \mathbf{v})_z \approx (\rho_{t,\text{max}}/R) \sin(n\phi_s)[b_n - a_n].
\]

\(a_n\): spatial anisotropy
\(b_n\): flow anisotropy
\(R\): reference source radius
\(\rho_t\): transverse flow velocity

Quadrupole or sine structure of \(\omega_z\) is expected.

S. Voloshin, arXiv:1710.08934
Systematic uncertainties

Case of 200 GeV as an example

- Event plane determination: ~22%
- Methods to extract the polarization signal: ~21%
- Possible contribution from the background: ~13%
- Topological cuts: <3%
- Uncertainties of the decay parameter: ~2% for Λ, ~9.6% for anti-Λ
- Extraction of Λ yield (BG estimate): <1%

Also, the following studies were done to check if there is no experimental effect:

- Two different polarities of the magnetic field for TPC
- Acceptance effect
- Different time period during the data taking
- Efficiency effect