

Explore the Nuclei Deformation with an Expanding QGP Fireball

Shengli Huang Stony Brook University, Chemistry Department

STAR

Outline

- 1. Motivations
- 2. Data set and analysis detail
- 3. <p_> vs Multiplicity(Nch) in ultra-central AA collisions
- 4. v_n vs. $\langle p_T \rangle$ in ultra-central AA collisions
- 5. Comparison with model calculations
- 6. Summary

Stony Brook University $< p_T > vs$. Size of Fireball (R)

For two systems(A,B) with the fix multiplicity(same entropy), the temperature is higher in smaller system(A), therefore the smaller system will have a larger $< p_T >$

Hydrodynamic models predicted: $< p_T > \propto 1/R$

Wojciech Broniowski: 0907.3216 Aleksas Mazeliauskas: 1509.07492 Piotr Bozek :1701.09105

Stony Brook University $< p_T >$ in Ultra-Central AA collisions

F. Gardim, G. Giacalone and J. Ollitrault arXiv:1909.11609

 In ultra-central AA collisions, the multiplicity (entropy) increases while the system size R is saturated

 A sharp increasing of <p_T> is predicted, which will be proportional to the square of speed of sound c_s

Eccentricity and system size in deformed nuclei

Giuliano Giacalone, BNL seminar

Nuclear matter density:

Quadrupole deformation, β2 <u>Usually from:</u> BNL nuclear data center https://www.nndc.bnl.gov/ Or calculations e.g. [Möller, Sierk, Ichikawa, Sagawa, **1508.06294**]

 $Y_{20} = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$

Nuclei are randomly oriented in space.

Tip-Tip: Smaller R and $\boldsymbol{\epsilon}_2$

Body-Body: Larger R and ϵ_2

- 1. ϵ_2 and system size depend on the deformation factor
- ε₂ is bigger in larger system: Tip-Tip vs. Body-body
- 3. $\langle p_T \rangle \propto 1/R$ and $v_2 \propto \varepsilon_2$: Anticorrelation between v_2 and $\langle p_T \rangle$ due to deformation

Measuring the v₂ vs <p_T> can be used to reveal the deformation factor!

 $v_2 v_3 < p_T >$

Giuliano Giacalone, 1910.04673

 <p_T> is converted from R by TRENto initial model, no final state effect and statistical fluctuations

2. Uranium nuclei is largely deformed comparing with Au nuclei. An anticorrelation between elliptic flow and <p_T> is expected in ultra central UU

STAR Detector

- <p_T>, v_n and Nch are measured within 0.2<p_T<2.0GeV and $|\eta|$ <1.0
- Centrality is defined by Nch or ZDC energy
- The track efficiency are corrected from embedding data

 $< p_T > vs Nch$

 $< p_T >$ increasing trend becomes sharper in ultra-central AA collisions It indicates a tight correspondence between $< p_T >$ and system size, and will be useful to extract the speed of sound (C_s) of fireball

 V_2 vs <p_>>

A negative correlation is observed between v_2 and $<p_T>$ in top 0.5% UU collisions while not in AuAu

 V_3 vs <p_7>

Centrality From ZDC

0.5% centrality from ZDC:

ZDCW> 497 && ZDCE>497

TPC Centrality vs ZDC Centrality(I)

Similar behavior is observed from centrality defined by ZDC energy as that defined by TPC Nch

Stony Brook University TPC Centrality vs ZDC Centrality(II)

	System	TPC Centrality	ZDC Centrality
V ₂ slope	UU	-3.5%±0.1%	-3.8%±0.1%
V ₂ slope	AuAu	2.6%±0.2%	3.0%±0.2%
V ₃ slope	UU	1.7%±0.2%	1.3%±0.2%
V ₃ slope	AuAu	1.9%±0.2%	1.8%±0.2%

tony Brook University

Beside ultra-centrality, the slope between AuAu and UU are also different in other centralities.

It is due to the deformation effect and consistent with Glauber model prediction!

Effect of Statistical Fluctuations

The slope is a factor of two smaller of $< p_T >$ is calculated with sub-events

The effect of statistical fluctuations is huge!

Comparing with TRENTo

Without the statistical fluctuations, TRENto initial model over predicts the slope with $\beta_2=0.30$

Comparing with TRENTo+Fluctuation $\sim v_2$

Statistical fluctuation: $\frac{\delta \langle pt \rangle}{\langle \langle pt \rangle \rangle} = 0.018$ by assuming 1200 track in |eta|<1.0

Adding statistical by hand, model can re-produce the data

The statistical fluctuation is crucial!

Comparing with TRENTo+Fluctuation $\sim v_3$

Model can reproduce v_3 slope with same parameters!

Summary

- 1. We observer that a sharper increasing trend for <p_T> vs Nch in ultra-central collisions, which maybe used to extract the Cs as Hydro. predicted
- 2. The slope of $v_2 vs < p_T >$ are different between AuAu and UU due to deformations.
- 3.After adding the statistical fluctuations by hand, the TRENTo initial model can reproduce the data with deformation factor β_2 =0.30

Stony Brook University Corresponding of <pt> vs Initial Energy E_i

Stronger corresponding of <pt> with Ei that that of <pt> with 1/R

STAR

Dynamical Fluctuation of <pt>

From TRENTo, the dynamical fluctuation of E_i

$$\left. \frac{\delta E_i}{\langle E_i \rangle} = 0.03 \right.$$

From STAR, the dynamical fluctuation of <pt>

$$\frac{\delta \langle pt \rangle}{\langle \langle pt \rangle \rangle} = 0.012$$

Statistical Fluctuation

 $\left| \frac{\delta \langle pt \rangle}{\langle \langle pt \rangle \rangle} \right| = 0.018$ by assuming 1200 track in |eta|<1.0

Statistical fluctuation = 1.5 dynamical fluctuation