

Explore the Nuclei Deformation with an Expanding QGP Fireball

Shengli Huang for STAR Collaboration Stony Brook University, Chemistry Department

Outline

- 1. Motivations
- 2. Data set and analysis detail
- 3. $< p_T > vs$ multiplicity (Nch) in ultra-central A+A collisions
- 4. v_n vs. $< p_T >$ in ultra-central A+A collisions
- 5. Comparison with model calculations
- 6. Summary

Stony Brook University $< p_T > vs.$ Size of Fireball (R)

For two systems (A,B) with the fixed final-state multiplicity (same entropy), the temperature is higher in smaller system (A), therefore the smaller system will have a larger <pT>

Hydrodynamic models predicted: $<pT> \propto 1/R$

Wojciech Broniowski: <u>PhysRevC.80.051902</u> Aleksas Mazeliauskas: <u>PhysRevC.93.024913</u> Piotr Bozek : <u>PhysRevC.96.014904</u>

Stony Brook University <p_> in Ultra-Central A+A collisions

F. Gardim, G. Giacalone and J. Ollitrault arXiv:1909.11609

 In ultra-central A+A collisions, the multiplicity (entropy) increases while the system size R is saturated

2. A sharp increasing of $< p_T >$ is predicted, which will be proportional to the square of speed of sound c_s

Eccentricity and system size in deformed nuclei

Nuclear matter density:

Giuliano Giacalone, BNL seminar

Quadrupole deformation, β2 <u>Usually from:</u> BNL nuclear data center https://www.nndc.bnl.gov/ Or calculations e.g. [Möller, Sierk, Ichikawa, Sagawa, **1508.06294**]

$$Y_{20} = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$$

Nuclei are randomly oriented in space.

Tip-Tip: Smaller R and ϵ_{2}

Body-Body: Larger R and ϵ_2

- 1. ϵ_2 and system size depend on the deformation factor
- ε₂ is bigger in larger system: Tip-Tip vs. Body-Body
- 3. $<p_T > \propto 1/R$ and $v_2 \propto \varepsilon_2$: Anticorrelation between v_2 and $<p_T >$ due to deformation

Measuring the v_2 vs. $<p_T>$ can be used to reveal the deformation factor!

 v_2 vs. $< p_T >$

Giuliano Giacalone, 1910.04673

 <p_T> is converted from R by TRENTo initial model, no final-state effects and

 Uranium nuclei are largely deformed comparing with Au nuclei. An anticorrelation between elliptic flow and <p_T> is expected in ultracentral U+U collisions

statistical fluctuations

The STAR Detector

stony Brook University

- <p_T>, v_n and Nch are measured within 0.2<p_T<2.0 GeV/c and $|\eta|$ <1.0
- Centrality is defined by Nch or ZDC energy
- The track efficiency iscorrected from embedding data

V_2 vs. Nch

In ultra-central A+A collisions, the v_2 {2} shows different slopes between Au+Au and U+U

 v_2 {4} from Au+Au changes the sign while not for v_2 {4} from U+U

The difference between Au+Au and UU indicates that deformation affects the flow behavior in ultracentral A+A collisions

 $< p_T > vs.$ Nch

 $< p_T >$ increasing trend becomes sharper in ultra-central A+A collisions It indicates a tight correspondence between $< p_T >$ and system size, and will be useful to extract the speed of sound (C_s) of fireball

Shengli Huang

Stony Brook University

 v_{2} vs. $< p_{T} >$

An anticorrelation is observed between v_2 and $<p_T>$ in top 0.5% UU collisions while not in AuAu

 v_3 vs. $< p_T >$

Stony Brook University TPC Centrality vs ZDC Centrality

	System	TPC Centrality	ZDC Centrality
v ₂ slope	U+U	-3.5%±0.1%	-3.8%±0.1%
v ₂ slope	Au+Au	2.6%±0.2%	3.0%±0.2%
v ₃ slope	U+U	1.7%±0.2%	1.3%±0.2%
v ₃ slope	Au+Au She	^{ngli} Huang 1.9%±0.2%	1.8%±0.2%

Centrality Dependence

Besides ultra-centrality, the v_2 slopes between Au+Au and U+U are also different in other centralities.

It is due to the deformation effect and consistent with the Glauber model prediction!

Two-subevent Method

Stony Brook University

 $\langle V_{nn} \rangle = \langle Q_{n,A} \times Q_{n,B}^* \rangle$ $\langle \langle p_T \rangle \rangle: Full Event, Subevent (A, B)$

Shengli Huang

#Count

Effect of Statistical Fluctuations

The slope is a factor of two smaller for $<p_T>$ from subevents

The effect of statistical fluctuations is huge!

Normalized Slope

After normalized by the sigma of $< p_T >$ distribution, the slope difference between full event and half event drop to 50%

Still working to understand the residual difference

Comparing with TRENTo

Without the statistical fluctuations, TRENTo initialstate model overpredicts the slope with $\beta_2(UU)=0.30$ and $\beta_2(AuAu)=-0.13$

STAR

^y Comparing with TRENTo+Fluctuation: v₂

Statistical fluctuations added by hand in model: $\frac{\delta \langle pt \rangle}{\langle \langle pt \rangle \rangle} =$ 0.018

After adding the statistical fluctuations, the model can reproduce data

The statistical fluctuations are crucial!

Comparing with TRENTo+Fluctuation $\sim v_3$

Model can reproduce v_3 slope with same parameters!

Summary

- We observed that increasing trend of <p_T> vs. Nch become shaper in ultra-central A+A collisions, which maybe useful to extract the c_s as predicted by hydrodynamics
- The slope of $v_2 vs < p_T >$ are different between Au+Au and U+U due to the deformation
- After adding the statistical fluctuations by hand, the TRENTo initial-state model can reproduce the data with deformation factor β_2 =0.30 for U+U and β_2 =-0.13 for Au+Au