The STAR Upgrade Program

Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration

> Winter Workshop on Nuclear Dynamics, Feb 2013

Overview

- Introduction
- Near Term Upgrades
 - Muon Telescope Detector (MTD)
 - Realization & Planned Physics from MTD
 - Heavy Flavor Tracker (HFT)
 - Realization & Planned Physics from HFT
- Future Plans (STAR decadal Plan)
 - iTPC
 - Forward upgrades for pA and eRHIC
- Status and Summary

How to explore QCD: from hot to cold

- Hot QCD matter: high luminosity RHIC II (fb⁻¹ equivalent)
 - Heavy Flavor Tracker: precision charm and beauty
 - Muon Telescope Detector: $e+\mu$ and $\mu+\mu$ at mid-rapidity
 - Trigger and DAQ upgrades to make full use of luminosity
 - Tools: jets combined with precision particle identification
- Phase structure of QCD matter: Beam Energy Scan Phase II
 - Fixed Target to access lowest energy at high luminosity
 - Low energy electron cooling to boost luminosity for Vs_{NN} <20 GeV
 - Inner TPC Upgrade to extend η coverage, improve PID
- Cold QCD matter: high precision p+A, followed by e+A
 - Major upgrade of capabilities in forward direction
 - Existing mid-rapidity detectors well suited for portions of e+A program

over a broad range in pseudorapidity

2/8/2013

STAR near term upgrades

- Muon Telescope Detector (MTD)
 - Accessing muons at mid-rapidity
 - R&D since 2007, construction since 2010
 - Significant contributions from China & India
- Heavy Flavor Tracker (HFT)
 - Precision vertex detector
 - Ongoing DOE MIE since 2010
 - Significant sensor development by IPHC, Strasbourg

STAR-MTD physics motivation

The large area of muon telescope detector (MTD) at mid-rapidity allows for the detection of

- Di-muon pairs from QGP thermal radiation, quarkonia, light vector mesons, resonances in QGP, and Drell-Yan production
- Single muons from the semi-leptonic decays of heavy flavor hadrons
- Advantages over electrons: no γ conversion, much less Dalitz decay contribution, less affected by radiative losses in the detector materials, trigger capability in Au+Au collisions
- Trigger capability for low to high $p_T J/\psi$ in central Au+Au collisions and excellent mass resolution results in separation of different upsilon states
- e-muon correlation can distinguish heavy flavor production from initial lepton pair production

Concept of design of the STAR-MTD

MTD

2/8/2013

Multi-gap Resistive Plate Chamber (MRPC): gas detector, avalanche mode

A detector with long-MRPCs covers the whole iron bars and leaves the gaps inbetween uncovered. Acceptance: 45% at $|\eta|$ <0.5

118 modules, 1416 readout strips, 2832 readout channels

Long-MRPC detector technology, electronics same as used in STAR-TOF

STAR-MTD

MTD Performance from Run 12

Commissioned e-muon (coincidence of single MTD hit and BEMC energy deposition above a certain threshold) and di-muon triggers, event display for Cu+Au collisions shown above

Determined the electronics threshold for the future runs, achieved 90% efficiency at threshold 24 mV

Intrinsic spatial resolution: 2 cm

Quarkonium from MTD

- J/ψ: S/B=6 in d+Au and S/B=2 in central Au+Au collisions
- 2. Excellent mass resolution: separate different upsilon states
- 3. With HFT, study $B \rightarrow J/\psi X$; $J/\psi \rightarrow \mu\mu$ using displaced vertices

Heavy flavor collectivity and color screening, quarkonia production mechanisms:

 J/ψ R_{AA} and $v_2;$ upsilon R_{AA} \ldots

Z. Xu, BNL LDRD 07-007; L. Ruan et al., Journal of Physics G: Nucl. Part. Phys. 36 (2009) 095001

Heavy Flavor Tracker (HFT)

Heavy Flavor Tracker (HFT)

Detector	Radius (cm)	Hit Resolution R/φ - Z (μm - μm)	Radiation length
SSD	22	20 / 740	1% X ₀
IST	14	170 / 1800	<1.5 %X ₀
PIXEL	8	12/ 12	~0.4 %X ₀
	2.5	12 / 12	~0.4% X ₀

PIXEL

- two layers
- 18.4x18.4 μm pixel pitch
- 10 sectors, delivering ultimate Pointing resolution that allows for direct topological identification of charm.
- New monolithic active pixel sensors (MAPS) technology
- Existing single layer detector, double side strips (electronic upgrade)

<u>IST</u> One layer of silicon strips along the beam direction $(r-\phi)$, guiding tracks from the SSD to PIXEL detector. - **proven technology**

2/8/2013

PXL Detector Design

Carbon fiber sector tubes (~ $200\mu m$ thick)

Novel rapid insertion mechanism allows effective exchanges and repairs (~12 h) Precision kinematic mount guarantees reproducibility to < 20 microns

Production sector

Production sector on metrology stage

Intermediate Si Tracker

24 ladders, liquid cooling

Prototype Ladder S:N > 20:1 >99.9% live and functioning channels

Silicon Strip Detector (SSD)

- Direct HF hadron measurements (p+p and Au+Au)

 (1) Heavy-quark cross sections: D^{0±*}, D_s, Λ_c, B, ...
 (2) Both spectra (R_{AA}, R_{CP}) and v₂ in a wide p_T region: 0.5 10 GeV/c
 (3) Charm hadron correlation functions, heavy flavor jets
 (4) Full spectrum of the heavy quark hadron decay electrons
- Physics

Measure heavy-quark hadron v₂, heavy-quark collectivity, to study the medium properties e.g. light-quark thermalization
 Measure heavy-quark energy loss to study pQCD in hot/dense medium e.g. energy loss mechanism

(3) Analyze hadro-chemistry including heavy flavors

DCA resolution performance r-φ and z

GEANT: Realistic detector geometry + Standard STAR tracking including the pixel pileup hits at RHIC-II luminosity Goal with Al-based cable (Cu cable -> 55 micron for 750 MeV/c K)

Physics – Run-14,15 projections

B tagged J/ ψ

- HFT upgrade was approved CD-2/3 October 2011 and is well into fabrication phase
- All detector components have passed the prototype phase successfully
- A PXL prototype with 3+ sectors instrumented is planned for an engineering run and data taking in STAR in mid to end March
- The full assembly including PXL, IST and SSD should be available for RHIC Run-14, which is planned to be a long Au-Au run

Future Plans

- Beam Energy Scan II (Hui's talk Monday)
- Exploit pA physics
- Prepare STAR for eRHIC on 2020-2025 timescale (eSTAR)

Inner TPC Upgrade

Better tracking and dE/dx PID capability η 1.0-1.7 region -- broad physics impact on

- transverse spin physics program
- hyperon and exotic particle searches
- high p_T identified particles
- BES Phase II+
- Long range rapidity gap correlations. 2/8/2013

Current pad plane layout. 13 rows and gaps. Fill all inner sector with active pads. Configuration still under discussion

Some planned p+A measurements

- Nuclear modifications of the gluon PDF
 - Correlated charm production
- Gluon saturation
 - Forward-forward correlations (extension of existing π^0 - π^0)
 - h-h• $\pi^0-\pi^0$ Easier to measure
 - π⁰-π⁰
 x
 - γh • $\gamma - \pi^0$ } Easier to interpret
 - Drell-Yan
 - Able to reconstruct x_1, x_2, Q^2 event-by-event
 - Can be compared directly to nuclear DIS
 - True 2 \rightarrow 1 provides model-independent access to $x_2 < 0.001$
- *polarized* protons off nuclei can be studied at RHIC.
- Forward-forward correlations and Drell-Yan are also very powerful tools to unravel the dynamics of forward transverse spin asymmetries – Collins vs Sivers effects, TMDs or Twist-3, ...

Forward Instrumentation Upgrade

- Forward instrumentation optimized for **p+A** and **transverse spin** physics
 - Charged-particle tracking
 - e/h and γ/π^0 discrimination
 - Possibly baryon/meson separation

Plans for Forward Upgrade

Calorimeter:

- 1) EM: Pb-glass (FMS) augmented by Tungsten SPACAL
 - **1)** Smaller Moliere radius for better 2-γ separation
 - 2) Keep high E resolution
- 2) Hadron calorimetry for e/h discrim., jet reconstruction Very Forward GEM Tracker (VFGT)
 - 1) Likely GEM-based
 - 2) Details of the design depend on experience with FGT article Identification
- Particle Identification
 - RICH problematic with accessible p_T resolution
 - Threshold Cerenkov detector under consideration
 - Detector will not be included in initial upgrade
- Schedule: proposal this year, construction start 2015+ Ready for data 2017 at the earliest

Summary

STAR has an ongoing upgrade program that will enable significant physics measurements in 2013-1017

- Further high precision Heavy Flavor measurements will be carried out to explore the sQGP
- HFT upgrades will provide direct topological reconstruction for charm
- MTD will provide precision Heavy Flavor measurements in muon channels, and di-lepton measurements

Future upgrades for 2017+

- Enhanced TPC capabilities for BES II (and eSTAR)
- Forward Upgrades to exploit a p+A program
 - Full calorimetry (EM+Hadronic)
 - Modern tracking technology to make most of existing magnetic field
- Strong set of measurements to be made. Both complementary to, and supporting, those at a future eRHIC