

System Size and Shape Dependence of Anisotropic Flow

Niseem Magdy STAR Collaboration Stony Brook University niseem.abdelrahman@stonybrook.edu

The 33rd Winter Workshop 2017

Outline

- I. Introduction
- i. Motivation
- ii. STAR Detector
- iii. Correlation function technique

II. Results

- i. System size effect
- ii. System shape effect

III. Conclusion

Motivation

Is the observed anisotropy in ion-ion collision a final- or initial state effect?

What are the essential differences between the medium created in small (p+A) and large (A+A) collision systems?

➤ Is there a limiting size to lose final-state effects ?

 v_n measurements for different systems are sensitive to system shape (ε_n) , dimensionless size (RT) and transport coefficients $\left(\frac{\eta}{s}, \frac{\zeta}{s}, \dots\right)$.

Scaling out the system shape and size $\xrightarrow{\text{yields}} \left(\frac{\eta}{s}, \frac{\zeta}{s}, \dots\right)$ effect on v_n for each system.

Transport coefficients

The v_n measurements are sensitive to ε_n , RT and $\left(\frac{\eta}{s}, \frac{\zeta}{s}, \dots\right)$.

Acoustic ansatz

✓ Sound attenuation in the viscous matter reduces the magnitude of v_n . → Anisotropic flow attenuation; PRC84 034908 (2011) P.Staig and E.Shuryak

arXiv:1305.3341 $\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}$, $\beta \propto \frac{\eta}{s} \frac{1}{RT} + \cdots$ Roy A. Lacey, A. Taranenko, J. Jia, et al. dΝ dη 2 From macroscopic entropy considerations $(RT)^3 \propto$ $ln\left(\frac{v_n}{\varepsilon_n}\right) = a\frac{\eta}{s}\left(\frac{dN}{dn}\right)^{\frac{-1}{3}} + ln(b)$ arXiv:1601.06001 Roy A. Lacey, Peifeng Liu, Niseem Magdy, et al. $\ln(v_n) = a\left(\frac{\eta}{s}\right)\left(\frac{dN}{dn}\right)^{\frac{-1}{3}} + \ln(\varepsilon_n) + \ln(b)$ ✓ Scaling out the system size $\left(\frac{dN}{dn}\right)$ and shape (ε_n) should give similar transport coefficient $\left(\frac{\eta}{s}\right)$ (i.e. similar v_n) for different systems (final state-effect).

STAR Detector at RHIC

> Uniform acceptance in $|\eta| < 1$

Correlation function technique

All current techniques used to study v_n are related to the correlation function.

Two particle correlation function $Cr(\Delta \varphi)$ used in this analysis,

$$Cr(\Delta \varphi) = \frac{dN/d\Delta \varphi(same)}{dN/d\Delta \varphi(mix)}$$
 and $v_{nn} = \frac{\sum_{\Delta \varphi} Cr(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} Cr(\Delta \varphi)}$

Non-flow signals, as well as some residual detector effects (track merging/splitting) suppressed with $|\Delta \eta = \eta_1 - \eta_2| > 0.7$ cut.

$$v_{nn}(p_T^a, p_T^t) = v_n(p_T^a) v_n(p_T^t) \qquad n > 1$$

✓ Factorization ansatz for v_n (n > 1) verified.

$$v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - C p_T^a p_T^t \qquad \text{PRC 86.}$$

ATLAS Collaboration

. 014907 (2012)

C is the momentum conservation parameter $C \propto \frac{1}{\langle Mult \rangle \langle p_T^2 \rangle}$

5

Correlation function

Different system correlation function

For n = 1?

 $\succ v_{11}$ characteristic behavior gives a good constraint for $v_1^{even}(p_T)$ extraction.

> The characteristic behavior of $v_1^{even}(p_T)$ in good agreement with the hydrodynamics calculations

The momentum conservation parameter C scales as 1/<Mult>

Results $|\eta| < 1$ and $|\Delta \eta| > 0.7$

System size effect

$$ln(v_n) = a\left(\frac{\eta}{s}\right)\left(\frac{d\eta}{d\eta}\right)^{\frac{1}{3}} + ln(\varepsilon_n) + ln(b)$$

System size and shape effect

$$ln(v_n) = a\left(\frac{\eta}{s}\right)\left(\frac{dn}{d\eta}\right)^3 + ln(\varepsilon_n) + ln(b)$$

 $v_n(Mult)$ System size and shape $|\eta| < 1$ and $|\Delta \eta| > 0.7$

 v_2 vs mean multiplicity for all systems

\$v_2(Mult)\$ show similar trends for all systems.
 \$v_2\$ is system dependent (shape).

For a given n, v_n(p_T) show similar trends for all systems.
 ν₁^{even} and v₃ are system independent (similar ^η/_s).
 ν₂ is system dependent.

 $v_n(p_T)$ System size $|\eta| < 1$ and $|\Delta \eta| > 0.7$

 v_2 vs p_T at fixed mean multiplicity for all systems

 $\succ v_2$ show similar trends for all systems.

 $\succ v_2$ is system dependent (shape).

 $\succ v_2$ is system dependent (shape).

 $v_n(Mult)$ System size and shape $|\eta| < 1$ and $|\Delta \eta| > 0.7$

 $\frac{v_2}{\epsilon_2}$ mean multiplicity dependence for all systems

 ^{v₂}/_{ε₂} (Mult) for all systems scales to a single curve.

 Similar ^η/_s for all systems.

III. Conclusion

Comprehensive set of STAR measurements presented for $v_n(p_T, Mult)$ for several collision systems.

- ➤ For all systems;
 - ✓ For n =1, v_1^{even} (p_T) shows the same characteristic behavior.
 - ✓ For n >1, v_n decreases with the harmonic order.

Scaling the system size;

- ✓ The odd harmonics v_1^{even} and v_3 are shape independent
- $\checkmark \frac{v_2}{\epsilon_2}$ for all systems scaled onto one curve
- ✓ Final state ansatz hold for presented systems

Scaling features suggest that all presented systems have similar transport coefficient $(\frac{\eta}{s})$ at $\sqrt{s_{NN}} \sim 200 \ GeV$ (final-state effect)

III. Conclusion

Answers to initial questions?

Is the observed anisotropy in ion-ion collision final- or initial state effect?

✓ Final state ansatz hold for presented systems (p+Au, d+Au, Cu+Cu, Cu+Au, Au+Au and U+U).

What are the essential differences between the medium created in small (p+A) and large (A+A) collision systems?
✓ Size and shape are system dependent.
✓ Scaled results suggest similar (^η/_s) for p+Au, d+Au, Cu+Cu, Cu+Au, Au+Au and U+U.

Is there a limiting size to lose final state effects ?
 All presented systems show evidence for strong final state effects.

