

J/ ψ and ψ (2s) production in p+p collisions at $\sqrt{s} = 500$ GeV from STAR experiment

Qian Yang (for the STAR Collaboration)

University of Science and Technology of China Brookhaven National Laboratory

The 31st Winter Workshop on Nuclear Dynamics, 25-31 January 2015, Keystone resort, Colorado, USA

Qian Yang, WWND 2015

Outline

Introduction

- Motivation
- STAR Detector

 J/ψ measurement and analysis technique

- Dataset and Trigger
- J/ψ analysis method

Results

- J/ψ p⊤ spectrum
- $\psi(2s)$ to J/ ψ ratio

Summary

Motivation

J/ψ is one of the simplest QCD bound states, but its production mechanism in p+p is not well understood.

Non-relativistic QCD(NRQCD) factorization approach

All pairs with various probabilities - NRQCD matrix elements.

World data fitting constrains the universal NRQCD matrix elements at NLO - predictive power in different collision systems, ee, ep and pp.

- Polarization is an ultimate test of NRQCD.
- For some channels, NLO corrections are orders of magnitude larger than LO.

Fragmentation function approach

- Theoretical predictions: direct J/ψ .
- Data: prompt J/ ψ (direct + feed down(χ_{cJ} and ψ (2s)))
- Fragmentation function approach are valid only in high p_T range!!!

The Solenoid Tracker At RHIC (STAR)

Large acceptance: Inl<1, full azimuthal coverage.

Main detectors used in this analysis:

Time Projection Chamber momentum measurement, particle identification.

Barrel ElectroMagnetic Calorimeter(BEMC):

electron identification, fast triggering

Two new detectors since 2014: Muon Telescope Detector(MTD) Heavy Flavor Tracker(HFT)

Dataset and Trigger

Competition effect:

- High instantaneous luminosity
- Limited event recording rate of slow tracking detector (TPC)

Fast detectors select (or trigger on) interesting events. Barrel ElectroMagnetic Calorimeter(BEMC) is a good choice.

Channel of interest: $J/\psi \rightarrow e^-e^+$

An event with an energy deposition in a single tower of the BEMC above a certain threshold was recorded.

Large BEMC triggered data samples in p+p collisions at $\sqrt{s} = 500$ GeV from 2011.

Trigger Name	Trigger Threshold	Number of Events	Sampled Luminosity
BHT1	E _T > 3.5GeV	170M	22 pb ⁻¹
VPDMB		106M	0.011pb ⁻¹

Electron Identification:Triggered electron

Triggered electron: BEMC(adc0 and pc/E) and TPC(dE/dx)

most energetic tower in a BEMC cluster.

 peak around 300 - electron firing the trigger

Hadrons: deposit part of its energy in BEMC.

Electron: deposit almost all energy in BEMC

Qian Yang, WWND 2015

Electron Identification: Triggered electron

Electron Identification: Non-triggered electron

• dE/dx cut (-2< $n\sigma_e$ <2)

• dE/dx is sufficient for low p_T electron identification.

J/ψ and $\psi(2s)$ Reconstruction

Invariant mass distribution of e-e+ pairs

- Reconstruction method:
 - "triggered electron" : identified using TPC and BEMC
 - "non-trigger electron": identified using TPC only
 - "triggered electron" + "nontriggered electron" (and "triggered" + "triggered electron")
- Background reconstruction:
 - Like-sign technique(e+e+ + e-e-)

Extract J/ ψ line shape from Monte Carlo

bremsstrahlung-tail at low mass range

To account for electron energy loss in detector, Crystal Ball function was used to describe the line shape of J/ψ signal.

Extract J/ψ yield

 J/ψ line shape is extracted from Monte Carlo(fixed m₀, α and n).

- Crystal ball function and exponential function are used to describe J/ψ signal and residual background.

Residual background: $D\overline{D}$ and $B\overline{B}$ decays as well as Drell-Yan process.

J/ψ efficiency—embedding technique

- 1. Simulated tracks are embedded into real events at the raw data level.
- 2. Mixed events are processed through the full reconstruction chain.
- An association map is created between the input MC tracks and the reconstructed tracks.

J/ψ efficiency and acceptance

- Trigger efficiency turns on 3.5 GeV/c.
- High p/E cut efficiency.

0

Gentle efficiency slope

J/ψ invariant cross section

Precise measurements of J/ ψ in 4<p_T<20 GeV/c at p+p 500GeV

Theoretical calculation is very welcome!!

Qian Yang, WWND 2015

x_T scaling

Proton and pion inclusive production cross sections in high energy p+p collisions have been found to follow x_T scaling:

$$E\frac{d^3\sigma}{dp^3} = g(x_T)\frac{1}{s^{\frac{n}{2}}}$$

In the parton model, n reflects the number of constituents taking an active role in hadron production.

J/ ψ is also found to follow x_T scaling(n=5.6±0.2). NRQCD prediction n≈6

• J/ ψ follows x_T scaling at p_T>4 GeV/c.

Extract $\psi(2s)$ yield

• Crystal ball function and linear function are used to describe $\psi(2s)$ signal and residual background.

$\psi(2s)$ and J/ ψ efficiency difference

- At low p_T, larger mass of ψ(2s) boosts the p_T of the decay electrons, thus enhancing the trigger efficiency.
- At high p_T, the larger opening angle between electron and positron from ψ(2s) results in a smaller acceptance.

Qian Yang, WWND 2015

$\psi(2s)$ to J/ ψ ratio

• STAR results consistent with world data trend with p_T .

• No collision energy dependence is seen with current precision.

Summary

- J/ ψ production in the pT range of 4-20 GeV/c in p+p collisions at $\sqrt{s} = 500$ GeV is measured.
- J/ ψ inclusive production cross section follows x_T scaling for pT larger than 4 GeV/c.
- The measured ratio of $\psi(2s)$ to J/ψ is consistent with previous measurements, and no energy dependence is seen.

Outlook

- Data analysis to extract J/ψ polarization is on-going, and the effect on the measured cross-section due to J/ψ polarization is under study.
- Comparison to theoretical calculations is under way. Input is very welcome.
- Low p_T J/ψ using MTD for p+p 500 GeV is ongoing, which is complementary to this analysis. Different kinematic sensitivity, different decay channel, different systematics.

Thank you!

Backup

J/ψ invariant mass, signal width and its raw spectrum

