

Azimuthal-angle dependence of pion femtoscopy relative to the first-order event plane in $\sqrt{s_{NN}} = 200$ GeV Au+Au and Cu+Au collisions at STAR

Yota Kawamura for the STAR Collaboration January 10th, 2019 WWND2019 @ Beaver Creek

STAR HBT intensity interferometry

- HBT can scope the source size at kinetic freeze-out
 - ✓ Measure quantum interference between two identical particles

- Make correlation function as a function of relative momentum (q)
- One can extract the source radius by fitting with theoretical formula

• Bertsch-Pratt Parameterization (S. Pratt, Phys. Rev. D 33, (1986) 72, G. Bertsch et al., Phys. Rev. C 37, (1988) 1896)

- 3-dimensional radii use
- ✓ R_{long} : Source size parallel to the beam direction
- $\checkmark R_{out}$: Source size parallel to the pair transverse momentum (k_T) + emission duration
- $\checkmark R_{side}$: Source size perpendicular to R_{out} and R_{long}

✓ Fit function:

 $C(\vec{q}) = N[(1-\lambda) + \lambda K(\vec{q})(1+G(\vec{q}))]$

$$G(\vec{q}) = \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$$

N : Normalization , K(q) : Coulomb correction, λ : Correlation strength \checkmark Pair relative momentum \vec{q} is decomposed into three projection

{qout, qside and qlong}

✓ Extract radii from fit of correlation function

- Final eccentricity can be measured by HBT radii w.r.t. Ψ_2
- $\varphi = 0^{\circ}$ R_{out}: short axis of ellipse, R_{side}: long axis of ellipse
- $\phi = 90^{\circ} R_{out}$: long axis of ellipse, R_{side} : short axis of ellipse
- Out-of-plane expanded final source ($\epsilon_{final} > 0$) can be measured
- It depends on initial eccentricity, source evolution, etc

- Final eccentricity can be measured by HBT radii w.r.t. Ψ_2
- $\varphi = 0^{\circ}$ R_{out}: short axis of ellipse, R_{side}: long axis of ellipse
- $\phi = 90^{\circ} R_{out}$: long axis of ellipse, R_{side} : short axis of ellipse
- Out-of-plane expanded final source ($\epsilon_{final} > 0$) can be measured
- It depends on initial eccentricity, source evolution, etc

- Final eccentricity can be measured by HBT radii w.r.t. Ψ_2
- $\varphi = 0^{\circ}$ R_{out}: short axis of ellipse, R_{side}: long axis of ellipse
- $\phi = 90^{\circ} R_{out}$: long axis of ellipse, R_{side} : short axis of ellipse
- Out-of-plane expanded final source ($\epsilon_{final} > 0$) can be measured
- It depends on initial eccentricity, source evolution, etc

- Final eccentricity can be measured by HBT radii w.r.t. Ψ_2
- $\varphi = 0^{\circ}$ R_{out}: short axis of ellipse, R_{side}: long axis of ellipse
- $\phi = 90^{\circ} R_{out}$: long axis of ellipse, R_{side} : short axis of ellipse
- Out-of-plane expanded final source ($\epsilon_{\text{final}} > 0$) can be measured
- It depends on initial eccentricity, source evolution, etc

STAR Final eccentricity via HBT

• Final eccentricity via HBT

 Final eccentricity decreases (more round shape) with increasing collision energy due to longer lifetime and stronger pressure gradients

Momentum space anisotropy

The direction of flow for spectator neutrons (measured in ZDC).

 Directed flow is generated by the interaction between spectator and participant particles

 \checkmark Quantified by the 1st harmonic in the Fourier expansion as v_1

$$v_1 = \left\langle \cos(\phi - \Psi_1) \right\rangle$$

v₁(η) is crossing zero 3 times at around midrapidity, forward and backward rapidities
 -> "wiggle structure"

✓ Possible signature of phase transition

J. Brachmann et al. Phys. Rev. C 61 (2000) 024909

✓ Hydrodynamic models cannot explain only v₁ (unlike to v₂ or v₃)

- v₁ signal can be generated from assuming the "tilted" source initial conditions
- HBT measurement w.r.t. Ψ₁ can scope source tilt at freeze-out by including cross terms in the fit function
- ✓ Fit function with cross terms:

$$\begin{split} C(\vec{q}) &= N[(1-\lambda) + \lambda K(\vec{q})(1+G(\vec{q}))] \\ G(\vec{q}) &= \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{out} q_{side} - 2R_{ol}^2 q_{out} q_{long} - 2R_{sl}^2 q_{side} q_{long}) \end{split}$$

- Important parameters: Rol, Rsl
- If final source is tilted, R_{ol} and R_{sl} cross terms will have oscillation w.r.t. Ψ_1

• 3D

:Out - Long plane

Projection Out - Long plane

• R^{2}_{sl} has its + $\pi/2$ oscillation

• The magnitude of oscillation corresponds to the tilt angle

9

- Tilt angle is inversely proportional to the beam energy
- At RHIC energy (200 GeV), source tilt value is expected to be nearly 0 or signal is very small
 - \checkmark Perform HBT measurement w.r.t Ψ_1 and scope tilt signal
 - using both Au+Au and Cu+Au in 200 GeV
 - ✓ Cu+Au have initial density asymmetry...
 - -> How does it affect HBT measurement?

STAR The STAR detector

Time Projection Chamber (TPC)

• Main tracking detector, $|\eta| < 1.0$, full azimuth

Zero Degree Calorimeter (ZDC)

- |η| > 6.3
- Measure spectator neutron
- Event plane reconstruction using spectator neutrons

Beam-Beam Counters (BBC)

- 3.3 < |η| < 5
- Event plane reconstruction using participants

TOF & TPC detector ✓ Use PID (particle identification) TPC (dE/dx) STAR Preliminary

TOF (time of flight)

- Au+Au 200 GeV, Cu+Au 200 GeV
- Number of events: Au+Au ~ 430 M Cu+Au ~ 45 M
- Correlation function

 - $C(q) = \frac{N(q)}{D(q)}$ N: pair distribution from the same event (real) D: different event pair distribution from the different events (mixed)

1.1

0.9

0.85

- Estimate Coulomb interaction correction factor K(q) : Coulomb correction factor
- Fit correlation function and extract radii parameters

 $C(\vec{q}) = N[(1-\lambda) + \lambda K(q)(1+G(\vec{q}))]$

✓ Azimuthally-integrated analysis $G(\vec{q}) = \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$

✓ Azimuthal-angle-dependent HBT analysis $G(\vec{q}) = \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{out} q_{side} - 2R_{ol}^2 q_{out} q_{long} - 2R_{sl}^2 q_{side} q_{side} - 2R_{sl}^2 q_{sid$

 Event plane reconstruction ✓ ZDC east + west plane used $\text{Res}\Psi_1 \sim 0.35 (\text{Au+Au})$ $\text{Res}\Psi_1 \sim 0.20 \text{ (Cu+Au)}$

0.8<u>---</u>0.2

0.5

0.4

0.3

0.2

0.1

0

Res{W₁}

-0.1

Cu+Au 200 GeV ZDC east+west Au+Au 200 GeV ZDC east+west

10 20 30 40 50 60 70 80 90100

Centrality (%)

0.1 0.2 q_{long} (GeV/c)

0.2

11

- N_{part}^{1/3} corresponds to the source radius at the collision time
- Checked HBT radii $\propto N_{part}^{1/3}$

STAR HBT radii w.r.t. Ψ₁ in Au+Au

- R_{out} , R_{side} and R_{os} have a 2nd-order oscillation due to the elliptic source shape with respect to Ψ_1
- Small (but ≠ 0) 1st-order oscillation can be found in R_{ol} and R_{sl} due to the source tilt signal
- These results indicate that the source shape at freeze-out is tilted even at the top RHIC energy

• Note that $\varphi - \Psi_1 = 0$ point is replotted at $\varphi - \Psi_1 = 2\pi$

STAR HBT radii w.r.t. Ψ₁ in Cu+Au

- In R_{ol}, average magnitude is shifted from 0 because center-of-mass rapidity is not 0 (shift to Au-going side ($\eta < 0$))
- Oscillation sign is similar trend with Au+Au
- Oscillation is distorted -> simply due to the poor EP resolution? or density asymmetry affects and distorts oscillation ?
 - -> More statistics may reveal where this trend comes from

STAR Event plane resolution correction 15

STAR Final eccentricity w.r.t. $\Psi_1(ZDC)$ vs $\Psi_2(TPC)$ 16

- (v₂{2} ≈ v₂{ZDC}) at low p_T
- Final eccentricity is smaller than initial eccentricity, but still remain out-of-plane extended (ε_{final} > 0)
- Final eccentricity shows a rough agreement between the participant Ψ_2 and the spectator Ψ_1 planes

PHENIX Collaboration, Phys. Rev. C 80 (2009) 024909

p₊ (GeV/c)

6

8

2

STAR Centrality dependence of tilt angle in Au+Au 17

- θ_s purely corresponds to geometrical tilt (only side and long info. used)
- θ_o is that $R_{ol,1}$ is used instead of $R_{sl,1}$
- Centrality dependence is very weak or absent
- Tilt angle shows similar trend to that of centrality dependence of v_1 slope

STAR η dependence of tilt angle in Au+Au 18

 EP resolution correction is not applied

- The average Rol value shifts when going away from center-of-mass rapidity
- The oscillation amplitude does not have significant dependence on $\boldsymbol{\eta}$
- Same tilt angle can been seen in all η region
- These results are consistent with the linear dv₁/dy slope at midrapidity

STAR K_T dependence of HBT radii

The 1st-order oscillations

- The 1st-order oscillation magnitude $R_{sl,1} R_{ol,1}$ seems to decrease with increasing k_T -> The same trend as the centrality dependence
- The 2nd-order oscillations $R_{o,2}/R_{s,0}$, $R_{s,2}/R_{s,0}$, $R_{os,2}/R_{s,0}$ have weak k_T dependence compared to the centrality dependence
 - It means final eccentricity (ε_{final}) shows very weak dependence on k_T (in the measured k_T range)

STAR K_T dependence of tilt angle in Au+Au 20

- Unlike centrality dependence, tilt angle seems to increase with k_T
- As the k_T increases, HBT radii decrease because of collective radial flow
 -> (R²_{I,0} R²_{s,0} + 2R²_{s,2}) decreases faster than R_{sl,1}, contributing to an increase in the θ_s

- Azimuthal-angle dependence of HBT radii w.r.t. Ψ_1
 - ✓ The 1st-order oscillations of R₀I and RsI have been measured in both Au+Au and Cu+Au collisions at 200 GeV
 - Final eccentricity (Au+Au 200 GeV)
 - ✓ Final eccentricity w.r.t. Ψ_1^{ZDC} is consistent with that measured by Ψ_2^{TPC}
 - ✓ Final eccentricity shows a centrality dependence and weakly depends on k_T
 - Tilt angle (Au+Au 200 GeV)
 - ✓ Centrality dependence of tilt angle is very weak or absent and tilt angle seems to increase with increasing k_T
 - ✓ Tilt angle seems to be η-independent within the TPC acceptance ($|\eta| < 1$)

Outlook

- Estimate systematic uncertainties
- Examine beam-energy dependence in BES-II with high statistics and good event plane resolution due to the installation of Event Plane Detector (EPD)

Au+Au 200 GeV Run11 minimum bias

- Events ~ 430 M
 Event selection
- |v_z| < 25 cm
- |v_r| < 2 cm
- |v_z v_z^{vpd}| < 3 cm
 Track selection
- 0.15 < p_T < 0.8 GeV/c
- |η| < 1
- nHitsFit >= 15
- nHitsFit/nHitsPoss >= 0.52
- DCA < 3 cm
 PID
- Tof Matched track
 - for 0.15 m^2 \pi \pm 2\sigma, $|n\sigma_{\pi}| < 3$
 - for 0.3 $m^2_{\pi} \pm 2\sigma$, veto $m^2_k \pm 2\sigma$, $|n\sigma_{\pi}| < 3$
- TPC only
 - for 0.15 |nσ_π| < 2
 - for 0.5 |nσ_π| < 2, |nσ_k| > 2

Cu+Au 200 GeV

Run12 minimum bias

• Events: ~ 45 M

Event Selection

- |v_z| < 30 cm
- |v_r| < 2 cm
- |v_z v_z^{vpd}| < 3 cm
 Track selection
- 0.15 < Pt < 0.8 GeV/c
- |η| < 1
- nHitsFit >= 15
- nHitsdEdx >= 10
- nHitsFit/nHitsPoss >= 0.52
- DCA < 3 cm

PID

- Tof Matched track
 - for 0.15
 m²π ± 2σ, |nσπ| < 3
 - for 0.3 $m^2_{\pi} \pm 2\sigma$, veto $m^2_k \pm 2\sigma$, $|n\sigma_{\pi}| < 3$
- TPC only
 - for 0.15 |nσ_π| < 2
 - for 0.5 |nσ_π| < 2, |nσ_k| > 2

24

- ✓ Cu+Au has asymmetric density gradient and it causes "dipole flow".
 -> It bump up directed flow signals. (Fig. (b))
- In addition, Cu+Au collisions have a different number of participants between forward and backward directions.
 - -> It shifts directed flow to the center-of-mass rapidity (Fig.(c))

STAR HBT radii in Au+Au consistency check 25

✓ Average radii are consistent within systematic uncertainties

Coulomb	4%	3%	4%	0.004
Fit Range	5%	5%	5%	0.002
FMH	7%	3%	3%	0.003
Total	9.5%	6.5%	7%	0.005

Source

 R_{out} R_{side} R_{long} ε_F

Systematic errors of average radii in STAR Collaboration, Phys. Rev. C 92 (2015) 014904

• Au+Au 200 GeV

There is a choice for EP resolution correction

- $<\cos(\Psi_1-\Psi_{RP})>$ 2 subevent or 3 subevent method
- $<\cos 2(\Psi_1 \Psi_{RP}) > 2$ subevent or 3 subevent method

S₁₁: source variance in x direction S₃₃: source variance in z direction S₁₃: x-z covariance

S' = $R_y^{\dagger}(\theta_s) \cdot S \cdot R_y(\theta_s)$ S_{µv}: Spatial correlation tensor $R_y(\theta_s)$: Rotation matrix

$$\theta_s = \frac{1}{2} \tan^{-1} \left(\frac{2S_{13}}{S_{33} - S_{11}} \right)$$

Rotating the spatial correlation tensor Sµv by θ s yields a purely diagonal tensor S'

$$\begin{aligned} R_{out}^{2}(\phi) &= \frac{1}{2}(S_{11} + S_{22}) - \frac{1}{2}(S_{22} - S_{11})\cos(2\phi) + \beta_{\mathrm{T}}^{2}S_{00} & R_{os}^{2}(\phi) = \frac{1}{2}(S_{22} - S_{11})\sin(2\phi) \\ R_{side}^{2}(\phi) &= \frac{1}{2}(S_{11} + S_{22}) + \frac{1}{2}(S_{22} - S_{11})\cos(2\phi) & R_{ol}^{2}(\phi) = S_{13}\cos(\phi) \\ R_{long}^{2}(\phi) &= S_{33} + \beta_{l}^{2}S_{00} & R_{sl}^{2}(\phi) = -S_{13}\sin(\phi) \end{aligned}$$

Express in out-side-long coordinate

$$\theta_s = \frac{1}{2} \tan^{-1} \left(\frac{-4R_{sl,1}^2}{R_{l,0}^2 - R_{s,0}^2 + 2R_{s,2}^2} \right)$$

Tilt angle definitions are referenced from M. A. Lisa et al., Phys. Lett. B489, (2000) 287-292