Particle Fluctuations in STAR

Gary D. Westfall Michigan State University for the STAR Collaboration

If we pass through a QCD phase transition, we expect a change in the number of degrees of freedom and a corresponding change in particle number fluctuations

If we pass through a QCD phase transition, we expect a change in the number of degrees of freedom and a corresponding change in particle number fluctuations

Hadronic matter to quark gluon matter

If we pass through a QCD phase transition, we expect a change in the number of degrees of freedom and a corresponding change in particle number fluctuations

Hadronic matter to quark gluon matter

 If we pass near a QCD critical point, we expect an increase in susceptibilities and a corresponding increase in particle number fluctuations

If we pass through a QCD phase transition, we expect a change in the number of degrees of freedom and a corresponding change in particle number fluctuations

Hadronic matter to quark gluon matter

 If we pass near a QCD critical point, we expect an increase in susceptibilities and a corresponding increase in particle number fluctuations

 Look for changes in fluctuations as a function of incident energy

Lattice QCD Calculations

Cheng et al., arXiv:0811.1006v2 [hep-th], quadratic and quartic fluctuations of baryon number, electric charge and strangeness, all quantities normalized to hadron gas Gary Westfall for STAR

Lattice QCD Calculations

Cheng et al., arXiv:0811.1006v2 [hep-th], quadratic and quartic fluctuations of baryon number, electric charge and strangeness, all quantities normalized to hadron gas Gary Westfall for STAR

Measure the number of pions, kaons, and protons event-by-event

- Measure the number of pions, kaons, and protons event-by-event
- Study K/π and p/π fluctuations to help remove event-by-event volume fluctuations

- Measure the number of pions, kaons, and protons event-by-event
- Study K/π and p/π fluctuations to help remove event-by-event volume fluctuations

Relate K/IT fluctuations to strangeness fluctuations

- Measure the number of pions, kaons, and protons event-by-event
- Study K/π and p/π fluctuations to help remove event-by-event volume fluctuations
- Relate K/π fluctuations to strangeness
 fluctuations
- Relate p/π fluctuations to baryon number fluctuations

$$\sigma_{dyn} = \text{sgn} \left(\sigma_{data}^2 - \sigma_{mixed}^2 \right) \sqrt{\left| \sigma_{data}^2 - \sigma_{mixed}^2 \right|}$$

$$\sigma \text{ is the relative width of the}$$

$$K / \pi \text{ or } p / \pi \text{ distributions}$$

$$\sigma_{dyn} = \text{sgn} \left(\sigma_{data}^2 - \sigma_{mixed}^2 \right) \sqrt{\sigma_{data}^2 - \sigma_{mixed}^2}$$

$$\sigma \text{ is the relative width of the}$$

K / π or p / π distributions

Measure deviation from Poisson behavior $v_{\text{dyn},i\pi} = \frac{\left\langle N_{i}\left(N_{i}-1\right)\right\rangle}{\left\langle N_{i}\right\rangle^{2}} + \frac{\left\langle N_{\pi}\left(N_{\pi}-1\right)\right\rangle}{\left\langle N_{\pi}\right\rangle^{2}} - 2\frac{\left\langle N_{i}N_{\pi}\right\rangle}{\left\langle N_{i}\right\rangle\left\langle N_{\pi}\right\rangle}, \ i = K, p$

$$\sigma_{dyn} = \text{sgn} \left(\sigma_{data}^2 - \sigma_{mixed}^2 \right) \sqrt{\sigma_{data}^2 - \sigma_{mixed}^2}$$

$$\sigma \text{ is the relative width of the}$$

K / π or p / π distributions

Measure deviation from Poisson behavior $v_{\text{dyn},i\pi} = \frac{\left\langle N_{i}\left(N_{i}-1\right)\right\rangle}{\left\langle N_{i}\right\rangle^{2}} + \frac{\left\langle N_{\pi}\left(N_{\pi}-1\right)\right\rangle}{\left\langle N_{\pi}\right\rangle^{2}} - 2\frac{\left\langle N_{i}N_{\pi}\right\rangle}{\left\langle N_{i}\right\rangle\left\langle N_{\pi}\right\rangle}, \ i = K, p$

It turns out that

$$\sigma_{\rm dyn}^2 \approx v_{\rm dyn}$$
 for K/ π and p/ π

Gary Westfall for STAR

STAR Collaboration

STAR Collaboration

Au+Au at 20, 62.4, 130, and 200 GeV

- STAR Collaboration
 - Au+Au at 20, 62.4, 130, and 200 GeV
 - ${\it @}$ Phys. Rev. Lett. 103, 092301 (2009) for K/ π and preliminary results for p/ π

- STAR Collaboration
 - Au+Au at 20, 62.4, 130, and 200 GeV
 - ${\it @}$ Phys. Rev. Lett. 103, 092301 (2009) for K/ π and preliminary results for p/ π

MA49 Collaboration

- STAR Collaboration
 - Au+Au at 20, 62.4, 130, and 200 GeV
 - ${\it @}$ Phys. Rev. Lett. 103, 092301 (2009) for K/ π and preliminary results for p/ π

- MA49 Collaboration
 - Pb+Pb central collisions (0 3.5%) at 6.3, 7.6, 8.8,
 12.3, and 17.3 GeV for K/π and p/π

- STAR Collaboration
 - Au+Au at 20, 62.4, 130, and 200 GeV
 - ${\it @}$ Phys. Rev. Lett. 103, 092301 (2009) for K/ π and preliminary results for p/ π

- MA49 Collaboration
 - Ø Pb+Pb central collisions (0 3.5%) at 6.3, 7.6, 8.8,
 12.3, and 17.3 GeV for K/π and p/π
 - Phys. Rev. C79, 044910 (2009)

SH, Statistical Hadronization Model

SH, Statistical Hadronization Model

Torrieri, arXiv:0710.0380v1 [nucl-th] (2007)

- SH, Statistical Hadronization Model
 - Torrieri, arXiv:0710.0380v1 [nucl-th] (2007)
 - Torrieri et al., arXiv:1001:0087v1 [nucl-th] (2009)

- SH, Statistical Hadronization Model
 - Torrieri, arXiv:0710.0380v1 [nucl-th] (2007)
 - Torrieri et al., arXiv:1001:0087v1 [nucl-th] (2009)
- HIJING

- SH, Statistical Hadronization Model
 - Torrieri, arXiv:0710.0380v1 [nucl-th] (2007)
 - Torrieri et al., arXiv:1001:0087v1 [nucl-th] (2009)

HIJING

Phys. Rev. D44, 3501 (1991).

- SH, Statistical Hadronization Model
 - Torrieri, arXiv:0710.0380v1 [nucl-th] (2007)
 - Torrieri et al., arXiv:1001:0087v1 [nucl-th] (2009)

HIJING

- Phys. Rev. D44, 3501 (1991).
- OURAND, Ultrarelativistic Quantum Molecular Dynamics,

- SH, Statistical Hadronization Model
 - Torrieri, arXiv:0710.0380v1 [nucl-th] (2007)
 - Torrieri et al., arXiv:1001:0087v1 [nucl-th] (2009)

HIJING

- Phys. Rev. D44, 3501 (1991).
- OrgMD, Ultrarelativistic Quantum Molecular Dynamics,
 - http://th.physik.uni-frankfurt.de/~urqmd/

- SH, Statistical Hadronization Model
 - Torrieri, arXiv:0710.0380v1 [nucl-th] (2007)
 - Torrieri et al., arXiv:1001:0087v1 [nucl-th] (2009)

HIJING

- Phys. Rev. D44, 3501 (1991).
- OURAND, Ultrarelativistic Quantum Molecular Dynamics,
 - http://th.physik.uni-frankfurt.de/~urqmd/

HSD, Hadron String Dynamics,

- SH, Statistical Hadronization Model
 - Torrieri, arXiv:0710.0380v1 [nucl-th] (2007)
 - Torrieri et al., arXiv:1001:0087v1 [nucl-th] (2009)

HIJING

- Phys. Rev. D44, 3501 (1991).
- OURAND, Ultrarelativistic Quantum Molecular Dynamics,
 - http://th.physik.uni-frankfurt.de/~urqmd/

HSD, Hadron String Dynamics,

Ø Phys. Rev. C79, 024907 (2009)
Gary Westfall for STAR

K/π Fluctuations in Central Collisions

K/π Fluctuations in Central Collisions

Gary Westfall for STAR
K/π Fluctuations in Central Collisions

UrQMD

UrQMD

UrQMD

Compare UrQMD, HSD and SH

Compare UrQMD, HSD and SH

Compare STAR K/I Data with UrQMD and HSD

Compare STAR K/I Data with UrQMD and HSD

STAR acceptance used for all energies

Compare STAR K/m Data with UrQMD and HSD

STAR acceptance used for all energies

Compare STAR K/m Data with UrQMD and HSD

STAR acceptance used for all energies

Another Explanation for K/T

Another Explanation for K/II

Koch and Schuster, arXiv 0911.1160v1 (2009)

Another Explanation for K/π

Koch and Schuster, arXiv 0911.1160v1 (2009)

Gary Westfall for STAR

Scaling for K/I Fluctuations

Scaling for K/T Fluctuations
Poisson:
$$\sigma_{dyn}\left(\sqrt{s}\right) = \sigma_{dyn}\left(200 \text{ GeV}\right) \frac{\left[\sqrt{\left(\frac{1}{\langle K \rangle} + \frac{1}{\langle \pi \rangle}\right)}\right]_{\sqrt{s}}}{\left[\sqrt{\left(\frac{1}{\langle K \rangle} + \frac{1}{\langle \pi \rangle}\right)}\right]_{200 \text{ GeV}}}$$

Particle Number: $\sigma_{dyn}\left(\sqrt{s}\right) = \sigma_{dyn}\left(200 \text{ GeV}\right) \frac{\left[\sqrt{\langle K \rangle} + \langle \pi \rangle\right]_{200 \text{ GeV}}}{\left[\sqrt{\langle K \rangle} + \langle \pi \rangle\right]_{\sqrt{s}}}$
 $N_{\kappa} : \sigma_{dyn}\left(\sqrt{s}\right) = \sigma_{dyn}\left(200 \text{ GeV}\right) \frac{\left[\sqrt{\langle K \rangle}\right]_{200 \text{ GeV}}}{\left[\sqrt{\langle K \rangle}\right]_{\sqrt{s}}} N_{\pi}$ in a similar way
Geometric: $\sigma_{dyn}\left(\sqrt{s}\right) = \sigma_{dyn}\left(200 \text{ GeV}\right) \frac{\left[\left(\langle K \rangle \langle \pi \rangle\right)^{1/4}\right]_{200 \text{ GeV}}}{\left[\left(\langle K \rangle \langle \pi \rangle\right)^{1/4}\right]_{\sqrt{s}}}$

Centrality Dependence

Centrality Dependence

Centrality Dependence

Relate Centrality Dependence to Energy Dependence

Relate Centrality Dependence to Energy Dependence 10**★** STAR **NA49** 8 dyn $\left(\right.$ 10010 $/s_{NN}$ (GeV)

Relate Centrality Dependence to Energy Dependence 10**★** STAR NA49 8 dvn Using systematics of PHOBOS, Phys. Rev. C 74, 021902(R) (2006) C 10010 $/s_{NN}$ (GeV)

Separate Signs

Ø Predict K/π fluctuations and resonance production using the statistical hadronization model

- Ø Predict K/π fluctuations and resonance production using the statistical hadronization model
 - Torrieri et al., SQM, arXiv:1001:0087v1 [nucl-th] (2009)

- Ø Predict K/π fluctuations and resonance production using the statistical hadronization model
 - Torrieri et al., SQM, arXiv:1001:0087v1 [nucl-th] (2009)
- @ Relate $V_{dyn,K-\pi-}$ and $V_{dyn,K+\pi-}$ to $K^{*0}(892)/K^{-}$ ratio

- Ø Predict K/π fluctuations and resonance production using the statistical hadronization model
 - Torrieri et al., SQM, arXiv:1001:0087v1 [nucl-th] (2009)
- @ Relate $V_{dyn,K-\pi-}$ and $V_{dyn,K+\pi-}$ to $K^{*0}(892)/K^{-}$ ratio

$$(3/4) < N_{\pi} > (V_{dyn,K-\pi} - V_{dyn,K+\pi}) \approx K^{*0}/K^{-1}$$

р/п Fluctuations in Central Collisions

p/π Fluctuations in Central Collisions

UrQMD and HSD

UrQMD and HSD

UrQMD and HSD

STAR acceptance used for all energies

STAR acceptance used for all energies

STAR acceptance used for all energies

Same and Opposite Signs

Same and Opposite Signs

Conclusions - K/T

Conclusions - K/T

Current data for the incident energy dependence of K/II fluctuations in central collisions are insufficient to state whether there are any deviations from monotonic behavior and models disagree on what the monotonic behavior should be

Conclusions - K/II

- Current data for the incident energy dependence of K/II fluctuations in central collisions are insufficient to state whether there are any deviations from monotonic behavior and models disagree on what the monotonic behavior should be
- @ Centrality-selected K/\pi fluctuations seem to scale with $dN_{ch}/d\eta$ for 62.4 and 200 GeV Au+Au collisions
Conclusions - K/T

- Current data for the incident energy dependence of K/π fluctuations in central collisions are insufficient to state whether there are any deviations from monotonic behavior and models disagree on what the monotonic behavior should be
- \varPhi Centrality-selected K/ π fluctuations seem to scale with $dN_{ch}/d\eta$ for 62.4 and 200 GeV Au+Au collisions
- \oslash Same-sign K/ π fluctuations are close to zero

Conclusions - K/T

- Current data for the incident energy dependence of K/π fluctuations in central collisions are insufficient to state whether there are any deviations from monotonic behavior and models disagree on what the monotonic behavior should be
- @ Centrality-selected K/\pi fluctuations seem to scale with $dN_{ch}/d\eta$ for 62.4 and 200 GeV Au+Au collisions
- ${\it @}$ Same-sign K/ π fluctuations are close to zero
- o Opposite-sign K/ π fluctuations are negative

Conclusions - K/II

- Current data for the incident energy dependence of K/II fluctuations in central collisions are insufficient to state whether there are any deviations from monotonic behavior and models disagree on what the monotonic behavior should be
- \varPhi Centrality-selected K/ π fluctuations seem to scale with $dN_{ch}/d\eta$ for 62.4 and 200 GeV Au+Au collisions
- \oslash Same-sign K/ π fluctuations are close to zero
- Opposite-sign K/ π fluctuations are negative
- ${\it I}$ Sign-selected K/ π fluctuations can be related to resonance production, K*/K-

Gary Westfall for STAR

Conclusions - p/T

Conclusions - p/m

The current data for p/π fluctuations in central collisions show a relatively smooth dependence on incident energy

Conclusions - p/T

- The current data for p/π fluctuations in central collisions show a relatively smooth dependence on incident energy
- UrQMD and HSD calculations for p/π fluctuations reproduce the trend observed in central collisions at low energies but over-predict the observed fluctuations at higher energies

Conclusions - p/m

- The current data for p/π fluctuations in central collisions show a relatively smooth dependence on incident energy
- UrQMD and HSD calculations for p/π fluctuations reproduce the trend observed in central collisions at low energies but over-predict the observed fluctuations at higher energies
- The contrality selected p/ π fluctuations for 62.4 and 200 GeV Au+Au collisions don't seem to scale as well with $dN_{ch}/d\eta$ as the K/ π fluctuations

Conclusions - p/m

- The current data for p/π fluctuations in central collisions show a relatively smooth dependence on incident energy
- UrQMD and HSD calculations for p/π fluctuations reproduce the trend observed in central collisions at low energies but over-predict the observed fluctuations at higher energies
- Centrality selected p/π fluctuations for 62.4 and 200 GeV Au+Au collisions don't seem to scale as well with $dN_{ch}/d\eta$ as the K/π fluctuations
- ${\it \oslash}$ Sign selected p/ π fluctuations are always negative

Extra Slides

Comparison Between UrQMD and HSD

Gary Westfall for STAR