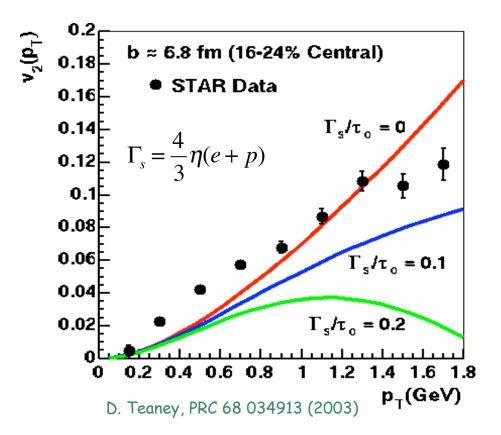


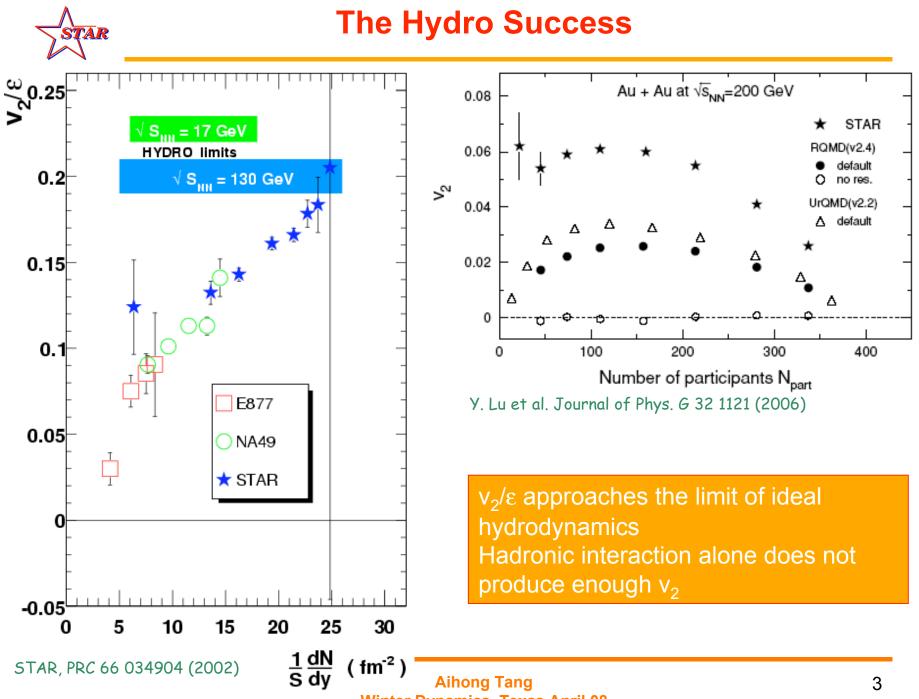
Flow Results and Hints of Incomplete Thermalization

Aihong Tang for the STAR Collaboration

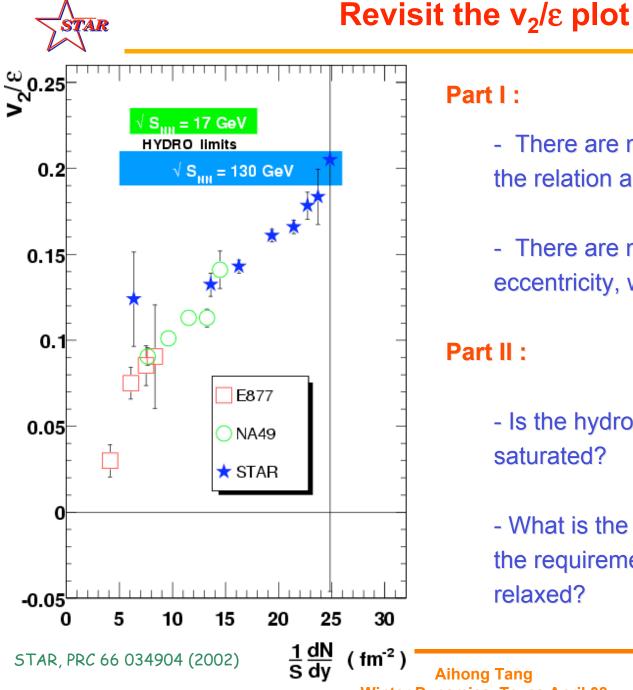
The Perfect Liquid



Viscosity reduces v₂ Viscosity needs to be small in order to explain data



Winter Dynamics, Texas April 08



Part I:

- There are many v_2 methods, what is the relation among them?

- There are many ways to calculate the eccentricity, which one to choose?

Part II:

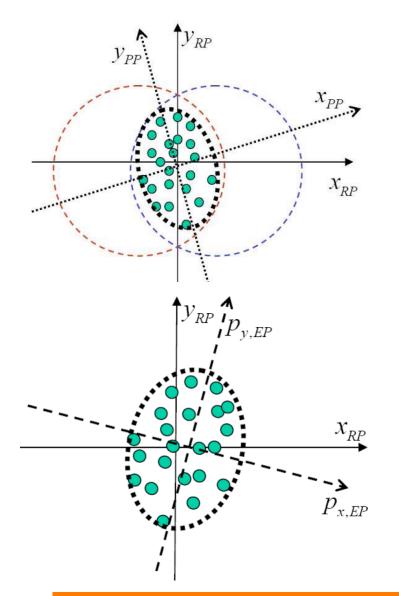
- Is the hydrodynamic limit really saturated?

- What is the trend we should expect if the requirement on local equilibrium is relaxed?

Aihong Tang Winter Dynamics, Texas April 08

Part I: Choose the Right {v₂,ε} Pairs

Definition of Planes



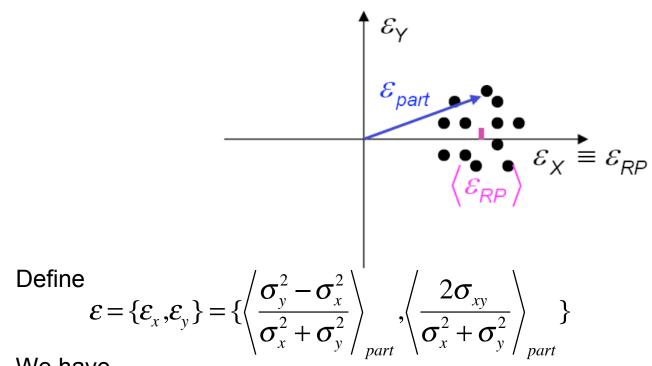
 ψ_{RP} - Reaction plane. Defined by the direction of the impact parameter.

 ψ_{PP} - Participant plane. Defined by the principle axis of the participant zone.

 ψ_{EP} - Event plane. Defined by the flow vector Q = {Q_x, Q_y}.

$$Q_n \cos(n\Psi_n) = X_n = \sum_i w_i \cos(n\phi_i)$$
$$Q_n \sin(n\Psi_n) = Y_n = \sum_i w_i \sin(n\phi_i)$$

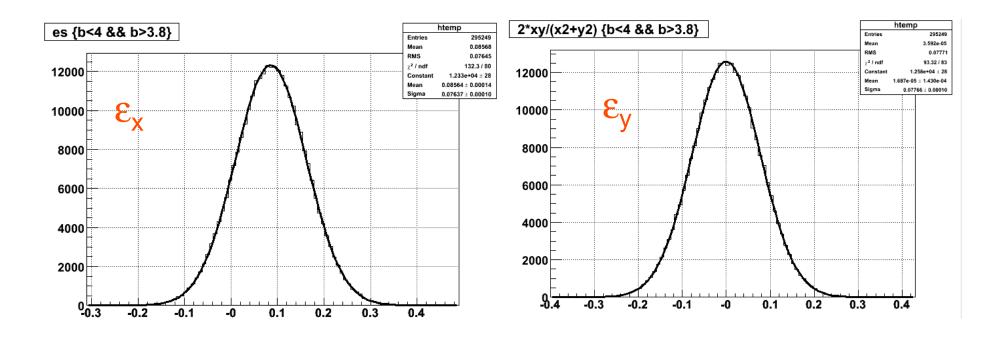
Definition of Eccentricities



We have

$$\begin{aligned} \varepsilon_{x} &\equiv \varepsilon_{RP} \\ \left\langle \varepsilon_{x} \right\rangle \approx \varepsilon_{optical} \\ \varepsilon_{part} &\equiv \varepsilon_{PP} = \sqrt{\varepsilon_{x}^{2} + \varepsilon_{y}^{2}} \\ \end{aligned}$$
The angle between Ψ_{RP} and Ψ_{PP} is given by $\Delta \Psi = \frac{1}{2} \arctan(-\frac{\varepsilon_{y}}{\varepsilon_{x}})$

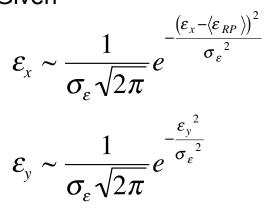
 $\mathcal{E}_{\mathbf{X}}$ and $\mathcal{E}_{\mathbf{V}}$



When small, the distribution of ε_x and ε_y can be well approximated by Gaussian, and it is found that the width of them are very close to each other.

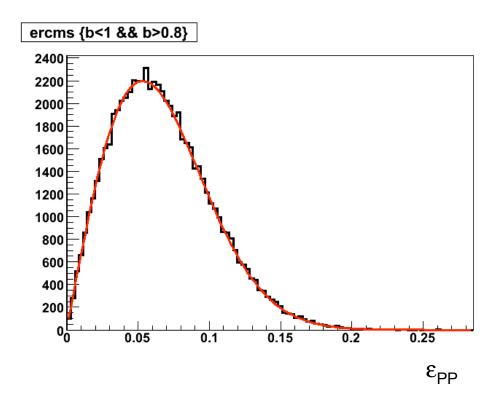
The distribution of participant eccentricity

Given



The probability for

$$\varepsilon_{part} \equiv \varepsilon_{PP} = \sqrt{\varepsilon_x^2 + \varepsilon_y^2}$$



is

$$\frac{dn}{d\varepsilon_{part}} = \frac{\varepsilon_{part}}{\sigma_{\varepsilon}^{2}} I_{0} \left(\frac{\varepsilon_{part} \langle \varepsilon_{RP} \rangle}{\sigma_{\varepsilon}^{2}} \right) \exp \left(-\frac{\varepsilon_{part}^{2} + \langle \varepsilon_{RP} \rangle^{2}}{2\sigma_{\varepsilon}^{2}} \right) \equiv BG(\varepsilon_{part}; \langle \varepsilon_{RP} \rangle, \sigma_{\varepsilon})$$

$$\frac{dn}{d\varepsilon_{part}} = \frac{\varepsilon_{part}}{\sigma_{\varepsilon}^{2}} I_{0} \left(\frac{\varepsilon_{part} \langle \varepsilon_{RP} \rangle}{\sigma_{\varepsilon}^{2}} \right) \exp \left(-\frac{\varepsilon_{part}^{2} + \langle \varepsilon_{RP} \rangle^{2}}{2\sigma_{\varepsilon}^{2}} \right) \equiv BG(\varepsilon_{part}; \langle \varepsilon_{RP} \rangle, \sigma_{\varepsilon})$$

$$\left\langle x^{2} \right\rangle = \overline{x}^{2} + 2\sigma^{2},$$

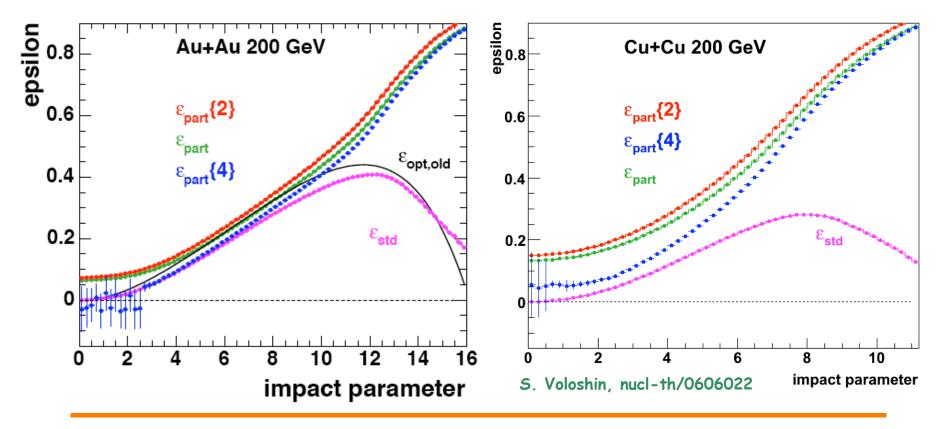
$$2\left\langle x^{2} \right\rangle^{2} - \left\langle x^{4} \right\rangle = \overline{x}^{4}$$

$$\left\langle x^{6} \right\rangle - 9\left\langle x^{4} \right\rangle \left\langle x^{2} \right\rangle + 12\left\langle x^{2} \right\rangle^{3} = 4\overline{x}^{6}$$

The distribution of participant eccentricity

$$\frac{dn}{d\varepsilon_{part}} = \frac{\varepsilon_{part}}{\sigma_{\varepsilon}^{2}} I_{0} \left(\frac{\varepsilon_{part} \langle \varepsilon_{RP} \rangle}{\sigma_{\varepsilon}^{2}} \right) \exp \left(-\frac{\varepsilon_{part}^{2} + \langle \varepsilon_{RP} \rangle^{2}}{2\sigma_{\varepsilon}^{2}} \right) \equiv BG(\varepsilon_{part}; \langle \varepsilon_{RP} \rangle, \sigma_{\varepsilon})$$

With this Pdf, both of the 4th order and 6th order cumulant ϵ_{part} equal to $<\epsilon_{\text{RP}}>$



Aihong Tang Winter Dynamics, Texas April 08

Define

$$v_{2}' = \left\langle \cos 2(\phi - \Psi_{PP}) \right\rangle$$
$$s_{2}' = \left\langle \sin 2(\phi - \Psi_{PP}) \right\rangle = 0$$

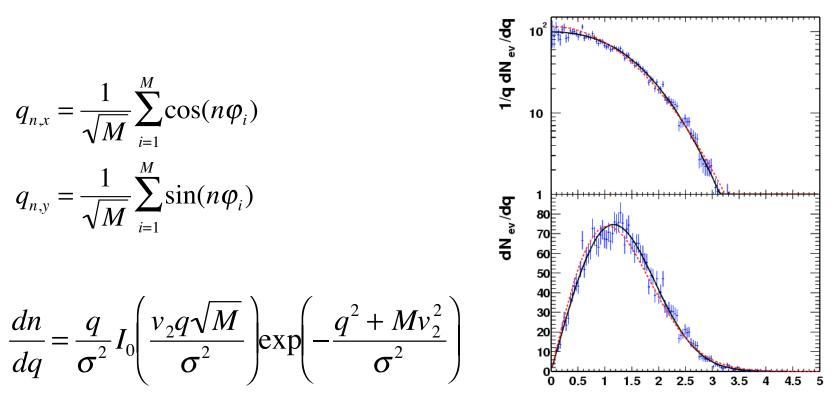
Assuming that on average, flow is proportional to $\epsilon,$ then the distribution of $v_2{}'$ is given by:

$$\frac{dn}{dv_{2}'} = \frac{v_{2}'}{\sigma_{v_{2},dyn}^{2}} I_{0}(\frac{v_{2}'\langle v_{2}\rangle}{\sigma_{v_{2},dyn}^{2}}) \exp(-\frac{v_{2}'^{2} + \langle v_{2}\rangle^{2}}{2\sigma_{v_{2},dyn}^{2}})$$

With this Pdf, the 4th order and 6th order cumulant are $-\langle v_2 \rangle^4$ and $4\langle v_2 \rangle^6$,

respectively.

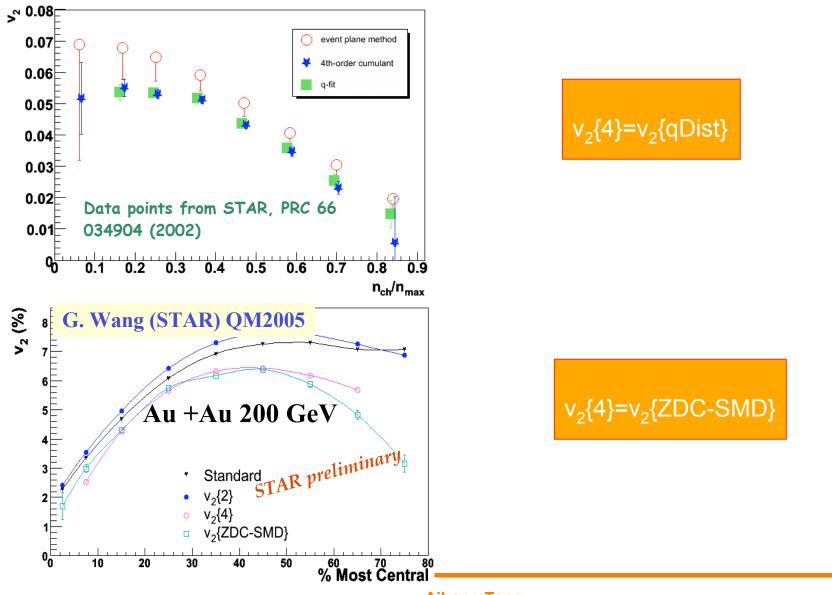
Although higher order cumulant v_2 can not give us the unbiased v_2 ' in the participant plane due to nonflow and fluctuations, they can give us v_2 in the reaction plane (not the participant plane) !



q distribution has the same formula as that for v_2 ', that means that v_2 obtained from fitting the q-distribution will give us v_2 in the reaction plane (not the participant plane) too. v_2 {qDist}= v_2 {4}

Here we see that if we calculate v_2 {q Cumulat} (=1/ \sqrt{M} (2(q²)²- (q)⁴)^{1/4}), it will give us the same answer as v_2 {4}

Check with data



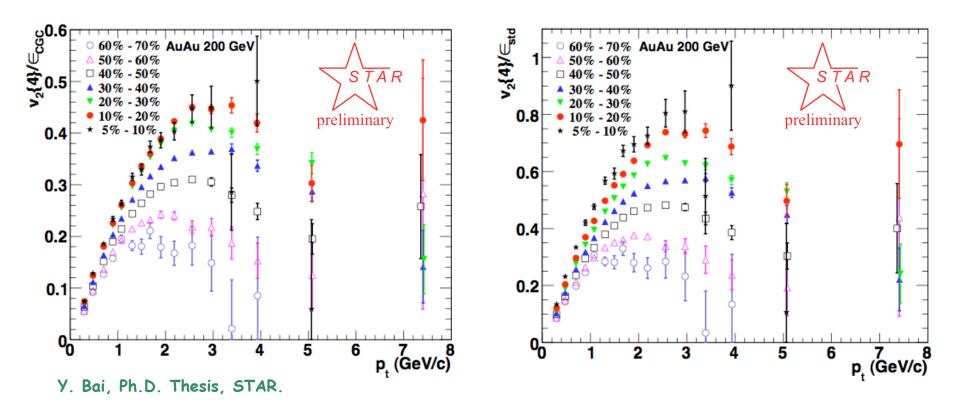
Aihong Tang Winter Dynamics, Texas April 08

Choose the right {v₂, ϵ **} pairs**

<pre>v₂ that are sensitive to anisotropy w.r.t. the Reaction Plane v₂: v₂{4}, v₂{qDist}, v₂{qCumulant4}, v₂{ZDCSMD}</pre>	v ₂ that are sensitive to anisotropy w.r.t. the Participant Plane : v ₂ {2},v ₂ {EP},v ₂ {uQ} etc.	In this slide (and throughout this talk as well), I assume that nonflow has been suppressed by external techniques (such as pseudorapidity gap etc.) in v ₂ measurements that are based on two particle correlations (v ₂ {2},v ₂ {EP},v ₂ {uQ}).
 ε that are sensitive to anisotropy w.r.t. the Reaction Plane: ε{std}, ε{4} 	 ε That are sensitive to anisotropy w.r.t. the Participant Plane: ε{part} ε{2} 	

S.Voloshin, A.Poskanzer, A.Tang and G.Wang, Phys. Lett. B 659 (2008) 537 R.Bhalerao and J-Y. Ollitrault, Phys. Lett. B 614 (2006) 260

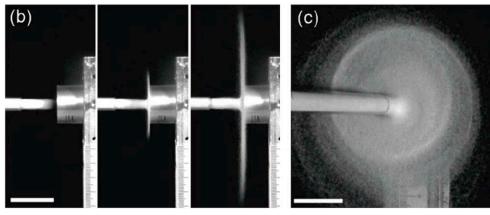
Flow Increases



 v_2 {4}/ ε_{std} increases with centrality over large p_t range (v_2 {2} did not allow for this study due to strong nonflow at high p_t). Peak position of v_2 {4} moves to higher transverse momentum with increasing centrality

Part II: What if we relax the requirement for local equilibrium ?

Is hydro limit saturated ? Let's check a classical example

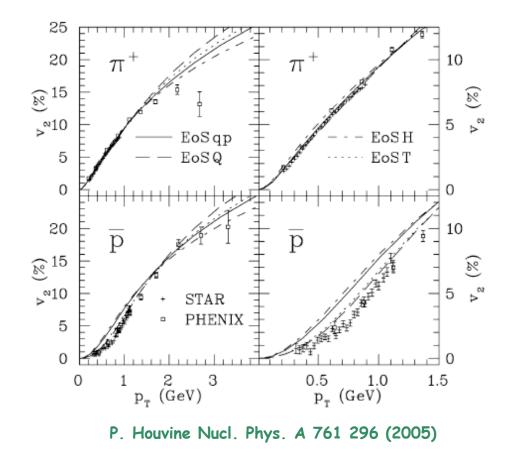


A jet of sand deforms into an extraordinarily thin symmetric granular sheet clearly resembling a spreading liquid.

A sharply focused azimuthal pattern is seen if the target has a rectangular shape.

 $v_2/\epsilon = 0.26 \sim \text{comparable to central}$ AuAu collisions at RHIC ! (shall we believe that it behaves like ideal hydro as well ? \bigcirc)

X. Cheng, G. Varas, D. Citron, H. Jaeger and S. Nagel, Phys. Rev. Lett. 99 188001 (2007)



An EoS with a rapid crossover over predicted the flow

How to view the hydro behavior better ? - Move away from it

- Ideal fluid and low viscosity \Leftrightarrow local equilibrium (small λ or large σ)

- To study the local equilibrium, we have to move away from it, say, check what if we relax the constraint of local equilibrium

- How to get a complete view? Study Boltzman equation for diluted system. It recovers Hydro when λ becomes small.

"To have a complete view of Lu Mountain, one has to move away from it." - Shi Su (1037~1101)

Transport Theory	Hydrodynamics
Microscopic	Macroscopic
Applicable out of equilibrium	Local equilibrium
Cannot describe phase transition	Can treat phase transition
D<<1	K<<1

D (Dilution parameter) =

K (Knudsen number) =

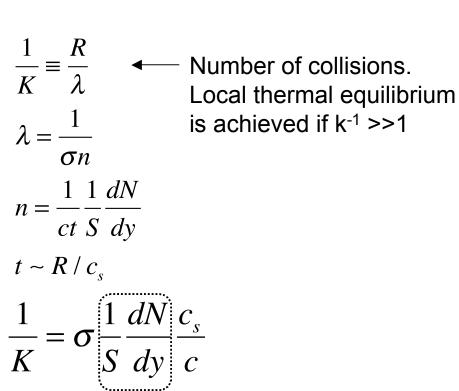
Typical distance between two particles Mean free path Mean free path System size

Boltzmann Equation will be reduced to Hydrodynamics when both D<<1 and K<<1

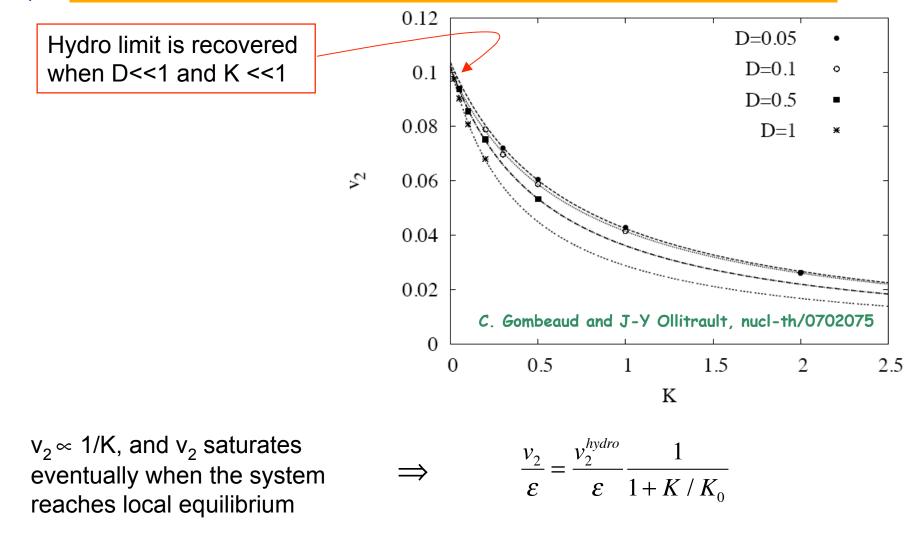
Connecting Pieces

$$D \equiv \frac{n^{-1/3}}{\lambda} = \sigma n^{2/3}$$

- *n*: particle density σ : parton cross section
- *R*: system size
- λ : mean free path

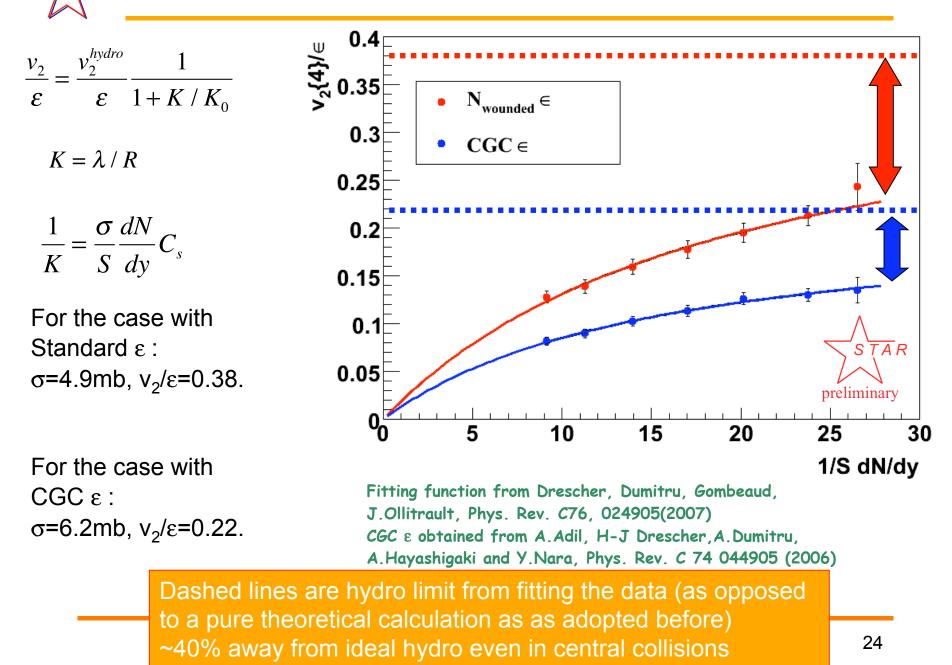


v₂ from Solving the Boltzmann Equation

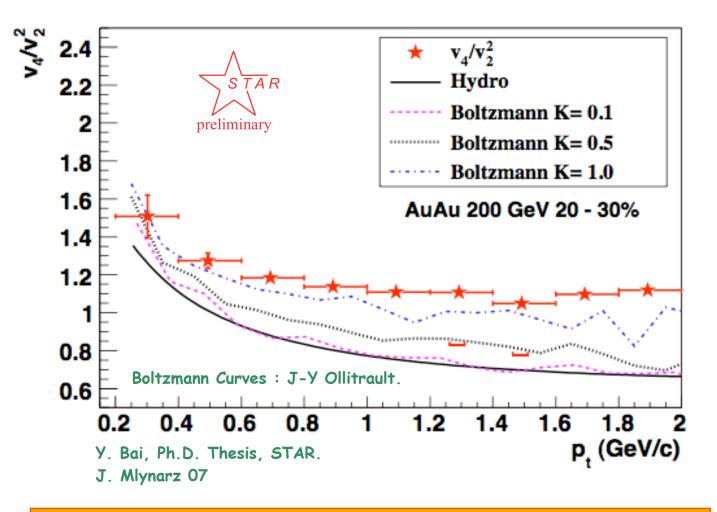


See next slide

How much deviation from ideal hydro?



How much deviation from ideal hydro?



An improved analysis since QM06 Considerable deviation from ideal Hydro

v₄ Systematics From v₂

(%) ²> 20

15

10

(4.2)

 v_4 of particle *i* at a certain p_t can be obtained by three-particle (i, j, k) correlations:

$$\langle \cos(4\phi_i - 2\phi_j - 2\phi_k) \rangle = v_4(p_t)v_2^2,$$

where the average is taken over all the particles and events. The dominant non-flow contribution to the three particle correlation can be estimated as follows: if particle i is correlated with particle j by non-flow and correlated with particle k by flow, the three-particle non-flow correlations can be written like:

$$g_2 \times \langle \cos(2\phi_i - 2\phi_k) \rangle = g_2 \times v_2\{4\}(p_t)v_2 \tag{4.3}$$

where g_2 is the non-flow contribution from two-particle correlations. It is shown that $g_2 \propto v_2^2 \{2\}(p_t) - v_2^2 \{4\}(p_t)$ [49,95]. Therefore, the non-flow contributions to $v_4(p_t)$ is obtained by:

$$\frac{g_2 \times v_2\{4\}(p_t)v_2}{v_2^2} = \frac{\left(v_2^2\{2\}(p_t) - v_2^2\{4\}(p_t)\right) \times v_2\{4\}(p_t)}{v_2}.$$
(4.4)

The non-flow contributions to v_4/v_2^2 is then estimated by

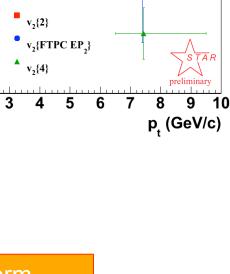
$$\frac{v_2^2\{2\}(p_t) - v_2^2\{4\}(p_t)}{v_2 v_2\{4\}(p_t)}.$$
(4.5)

Y. Bai, Ph.D. Thesis, STAR.

The first order systematics in v₄ is from flow*nonflow term

The nonflow term is from v_2 nonflow (not v_4)

The difference between v_2 {FTPC} and v_2 {4} is used in the estimation of nonflow of v_4 .



20%-30% AuAu 200 GeV

An Inconvenient Truth (not really related to global warming)

- While it is generally accepted that Hydrodynamics did a good job, for the first time, in describing RHIC's data, there are features that are not consistent with a complete thermalization, and they cannot be easily dismissed.

THE END

Backup Slides

Eccentricity Definitions

Standard eccentricity	$\varepsilon_{std} = \frac{\{y^2\} - \{x^2\}}{\{y^2\} + \{x^2\}}$	
Participant eccentricity (rotation only)	$\varepsilon_{rot} = \frac{\sqrt{(\{y^2\} - \{x^2\})^2 + 4\{xy\}^2}}{\{y^2\} + \{x^2\}}$	
Participant eccentricity (rotation + CM shift)	$\begin{split} \varepsilon_{part} &= \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}, \\ \sigma_x^2 &= \{x^2\} - \{x\}^2, \sigma_y^2 = \{y^2\} - \{y\}^2, \sigma_{xy} = \{xy\} - \{x\}\{y\} \end{split}$	
Transverse Area (fm ²)	$S = \pi \sqrt{\{x^2\}\{y^2\}}$	
$\varepsilon\{2\} = \sqrt{\langle \varepsilon^2 \rangle}, \varepsilon\{4\} = \left(2\left\langle \varepsilon^2 \right\rangle^2 - \left\langle \varepsilon^4 \right\rangle\right)^{1/4}$		