

Rapidity Dependence of Proton Higher-Order Cumulants in $\sqrt{s_{NN}} = 3.2$ GeV Au+Au Collisions at RHIC

Xin Zhang (Institute of Modern Physics, Chinese Academy of Sciences)

For STAR Collaboration

2025.05.26

- Motivation 1.
- 3. Analysis Details
- 4. Results
- 5. Summary and Outlook

Outline

2. STAR Fixed-Target Experiment Setup

Motivation

Goals of RHIC Beam Energy Scan Program: identify phase boundary and QCD critical point

Motivation

- rapidity and transverse momentum (p_T) bins is expected B. Ling and M. A. Stephanov, Phys. Rev. C 93, 034915 (2016)
- target rapidity (cold nuclear matter)

1. Should the critical behavior exist, a larger enhancement in fluctuations at wider

2. STAR Fixed-Target (FXT) experiment: scan from mid-rapidity (hot medium) to

Experimental Observables

Fluctuation: Cumulant

1. Measure non-Gaussian fluctuations

2. Extensive variables for cumulants (intensive for cumulant ratios)

Cumulants:

$$\begin{split} \delta N &= N - \langle N \rangle, \ N \ is \ proton \ multiplicity \ in \ an \ even \\ C_1 &= \langle N \rangle \\ C_2 &= \langle \delta N^2 \rangle \\ C_3 &= \langle \delta N^3 \rangle \\ C_4 &= \langle \delta N^4 \rangle - 3 \langle \delta N^2 \rangle^2 \\ C_5 &= \langle \delta N^5 \rangle - 10 \langle \delta N^3 \rangle \langle \delta N^2 \rangle \\ C_6 &= \langle \delta N^6 \rangle - 15 \langle \delta N^4 \rangle \langle \delta N^2 \rangle - 10 \langle \delta N^3 \rangle^2 + 30 \langle \delta N^2 \rangle^3 \end{split}$$

Conserved charges:

- 1. Net-baryon number (proton)
- 2. Net charge number
- 3. Net strangeness number (net-kaon)

Fluctuations of conserved quantities are sensitive to the critical behavior

Factorial Cumulants:

It

$$\begin{aligned} \kappa_1 &= C_1 \\ \kappa_2 &= -C_1 + C_2 \\ \kappa_3 &= 2C_1 - 3C_2 + C_3 \\ \kappa_4 &= -6C_1 + 11C_2 - 6C_3 + C_4 \\ \kappa_5 &= 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5 \\ \kappa_6 &= -120C_1 + 274C_2 - 225C_3 + 85C_4 - 15C_5 + C_4 \end{aligned}$$

Experimental Observables

The higher-order cumulants are more sensitive to the critical behavior

Skewness and Kurtosis can describe the shape of distribution:

$$S = C_3 / (C_2)^{3/2} \qquad \kappa = C_4 / (C_2)^2$$
$$\frac{C_2}{C_1} = \frac{\sigma^2}{M}, \quad \frac{C_3}{C_2} = S\sigma, \quad \frac{C_4}{C_2} = \kappa\sigma^2$$

Related to correlation length: <u>M. A. Stephanov, arXiv:0809.3450</u>

$$C_{3} = \langle (\delta N)^{3} \rangle \propto \xi^{\frac{9}{2}}$$

$$C_{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2} \propto \xi^{7}$$

STAR Fixed Target Experiment Setup

Gold target is 2.0 meters from the center of the TPC
Full azimuthal coverage (2π) and extended pseudo-rapidity acceptance (iTPC upgraded)
Extend to lower √s_{NN} (higher μ_B, μ_B = 699 MeV for √s_{NN} = 3.2 GeV)

Proton Identification

1. Performed a proton rapidity and p_T dependence of $n\sigma_{proton}$

2. The $n\sigma_{proton}$ distribution was fitted using multi-Gaussians Applied a dynamical $n\sigma_{proton}$ range to ensure proton purity

chigh cut proton Jlow cut high cut *multi – Gaussians* low cut

Proton Identification

- distribution
- above 90%

Centrality Determination

Reference multiplicity is all negative particles and π +

1. Pileup correction was performed using unfolding methods

<u>T. Nonaka et al., NIM A 984, 164632 (2020)</u>

2. The Glauber model used to determine the collision centrality

Centrality	Reference Multiplicity	Pileup Fraction
0-5%	(58,100)	$0.40^{+0.05}_{-0.04}\%$
5-10%	(47,57)	$0.22^{+0.03}_{-0.02}$ %
10-20%	(32,46)	$0.19^{+0.02}_{-0.02}\%$
20-30%	(22,31)	$0.17^{+0.01}_{-0.02}$ %
30-40%	(14,21)	$0.14^{+0.01}_{-0.01}$ %
40-50%	(9,13)	$0.12^{+0.01}_{-0.01}$ %
50-60%	(5,8)	$0.09^{+0.01}_{-0.01}$ %

Rapidity Dependence of Proton C₄/C₂

1. From mid- to projectile-rapidity, clear rapidity and centrality dependence in C₄/C₂. Also in the published 3.0 GeV

M. Abdallah, Phys. Rev. C 107, 024908 (2023)

Rapidity Dependence of Proton C_4/C_2 and κ_4/κ_1

1. From mid- to projectile-rapidity, clear rapidity and centrality dependence in C_4/C_2 . Also in the published 3.0 GeV

<u>M. Abdallah, Phys. Rev. C 107, 024908 (2023)</u>

2. Similar rapidity dependence are observed in κ_4/κ_1 , also in the published 3.0 GeV collisions

y' is the normalized rapidity, $y' = \frac{-y}{y}$

Rapidity Dependence of Proton C_4/C_2 and κ_4/κ_1

1. From mid- to projectile-rapidity, clear rapidity and centrality dependence in C_4/C_2 . Also in the published 3.0 GeV

<u>M. Abdallah, Phys. Rev. C 107, 024908 (2023)</u>

- 2. Similar rapidity dependence are observed in κ_4/κ_1 , also in the published 3.0 GeV collisions
- 3. Energy dependence have been observed from 3.0 3.2 GeV in peripheral 50-60% collisions

y' is the normalized rapidity, $y' = \frac{-y}{y}$

Rapidity Dependence of Proton C_4/C_2 and κ_4/κ_1

1. From mid- to projectile-rapidity, clear rapidity and centrality dependence in C₄/C₂. Also in the published 3.0 GeV

<u>M. Abdallah, Phys. Rev. C 107, 024908 (2023)</u>

- 2. Similar rapidity dependence are observed in κ_4/κ_1 , also in the published 3.0 GeV collisions
- 3. Energy dependence have been observed from 3.0 - 3.2 GeV in peripheral 50-60% collisions
- 4. Hadronic transport model UrQMD qualitatively reproduce these dependence. Larger difference are seen when extending rapidity window to projectile region

y' is the normalized rapidity, $y' = -\frac{-y}{-y}$

Rapidity Dependence of Proton C₅/C₁ and K₅/K₁

1. From mid- to projectile-rapidity, clear rapidity dependence in C₅/C₁ and κ_5/κ_1 . Also in the published 3.0 GeV

<u>M. Abdallah, Phys. Rev. C 107, 024908 (2023)</u>

- 2. Energy dependence have been observed from 3.0 - 3.2 GeV in peripheral 50-60% collisions
- 3. Hadronic transport model UrQMD qualitatively reproduce these dependence. Larger difference are seen when extending rapidity window to projectile region

y' is the normalized rapidity, y'

*Y*beam

11

Rapidity Dependence of Proton C_6/C_2 and κ_6/κ_1

1. From mid- to projectile-rapidity, clear rapidity dependence in C_6/C_2 and κ_6/κ_1 . Also in the published 3.0 GeV

<u>M. Abdallah, Phys. Rev. C 107, 024908 (2023)</u>

- 2. Energy dependence have been observed from 3.0 3.2 GeV in peripheral 50-60% collisions
- 3. Hadronic transport model UrQMD qualitatively reproduce these dependence

y' is the normalized rapidity, y'

*Y*beam

1 Γ 5/Κ1.

Summary

- (factorial) cumulant ratios in Au+Au collisions at $\sqrt{s_{NN}}$ = 3.2 GeV centrality and rapidity dependence of proton (factorial) cumulant ratios. Larger deviations are seen in peripheral collisions and at high rapidity regions in central collisions
- 1. Strong centrality and rapidity dependence is observed in the proton 2. Hadronic transport model UrQMD qualitatively reproduces the

Outlook

- 1. 3.0 GeV was recollected in 2021 with iTPC and eTOF upgrade, we can aim to have full mid-rapidity (|y| < 0.5, used in collider energy measurements) coverage, and statistical and systematic uncertainties may be reduced 2. The analysis of the rapidity dependence of proton high-order cumulants at
- 3.5, 3.9 GeV is in progress
- 3. Interesting rapidity dependence behavior may be further explored by the CBM experiment at 2.4 - 4.9 GeV

Thank you for your attention!

14