Measurements of Ξ , Ω Hyperons Global Polarization in Au+Au Collisions at BES-II **Energies from RHIC-STAR** Xingrui Gou(Gouxr@sdu.edu.cn), for the STAR Collaboration Shandong University # Quark Matter 2025 #### **Abstract** The observation of hyperon global polarization along the system's angular momentum has revealed the existence of large vorticities in the medium created by heavy-ion collisions. Using the high-statistics data collected by the STAR experiment during the RHIC Beam Energy Scan II (BES-II) program with upgraded detector systems, we present the global polarization measurements of Ξ and Ω hyperons in Au+Au collisions at BES-II energies ($\sqrt{s_{NN}}$ = 7.7, 9.2, 11.5, 14.6, 17.3, 19.6, and 27 GeV). Specifically, we focus on the polarization behaviors observed in different hyperons (Λ, Ξ, Ω) . These results provide new insights into the polarization mechanism and vorticity fields in heavy-ion collisions as well as additional constraints on the properties and dynamics of the hot and dense matter created in these collisions. ALICE Pb+Pb 15-50% PRC101.044611 (2020) • Λ • Λ . . . #### Introduction The polarization along the initial angular momentum direction, can be described as[1,2] > 8 1 $\langle \sin(\Psi_1 - \phi_B^*) \rangle$ $P_{H} = \frac{1}{\pi \alpha_{H} A_{0}} \frac{1}{Res(\Psi_{1})}$ Ψ₁: first-order event plane # α_H hyperon decay parameter ϕ_B^* azimuthal angle of the daughter baryon in hyperon rest frame An: acceptance correction factor √s_{NN} [GeV] #### Motivation Multi-strange hyperon global polarization properties - \square Collision energy, centrality, p_T , η dependence? - **D** Possible Λ, Ξ, Ω global polarization difference? ## **Global Polarization Signal Extraction** - $\hfill \Box$ Direct measurement : via daughter Λ angle distribution in Ξ,Ω rest frame - Indirect measurement : via daughter Λ polarization with spin transfer factor $(\mathcal{C}_{\Xi \to \Lambda}{\sim}0.944, \mathcal{C}_{\Omega \to \Lambda}{\sim}1.0 \text{ is assumed})$ - ☐ Generalized Invariant Mass method(IM) for signal extraction $\langle \sin(\Psi_{1}-\phi_{B}^{*})\rangle = \left(1-f^{Bg}(M_{inv})\right) (\sin(\Psi_{1}-\phi_{B}^{*}))^{Sig} + f^{Bg}(M_{inv}) (\sin(\Psi_{1}-\phi_{B}^{*}))^{Bg}$ $\langle \sin(\Psi_1 - \phi_B^*) \rangle^{Sig} = \langle \sin(\Psi_1 - \phi_B^*) \rangle^{True} + c \sin(\phi_H - \phi_B^*)$ $f^{Bg} \ (\mathit{M}_{inv})$ is background fraction as a function of invariant mass, c is v_1 factor #### The STAR Detector #### Time Projection Chamber $\Omega^- \rightarrow \Lambda + K^-$ - Upgrade with inner TPC - Better track quality - Larger acceptance $|\eta| < 1.0 \rightarrow |\eta| < 1.5$ #### Time Of Flight $\Omega^{-}(dss)$ - PID via particle velocity #### **Event Plane Detector** - Event plane reconstruction - $2.1 < |\eta| < 5.1$ ### Results - □ Significant $\Xi^- + \bar{\Xi}^+$ global polarization observed (~ 5 σ) - Global polarization of $\Xi^- + \bar{\Xi}^+$ and $\Omega^- + \bar{\Omega}^+$ seems to decrease with increase in collision energy - $\Xi^- + \Xi^+$ global polarization are consistent between direct and indirect measurement methods - No significant difference between $\Lambda + \overline{\Lambda}$ and $\Xi^- + \Xi^+$ global polarization within uncertainties - A hint of larger $\Omega^- + \overline{\Omega}^+$ polarization than $\Lambda + \overline{\Lambda}$ and $\Xi^- + \overline{\Xi}^+$ in lower energies #### \square Λ, Ξ, Ω hyperons reconstructed using KF Particle package **Hyperon and Event Plane Reconstruction** - First-order event plane reconstructed by EPD - Event plane correction: η -weight, ϕ -weight, recenter, flattening - Two-sub event plane method to estimate resolution with Bessel function # Summary - The first measurement of $\Xi^- + \bar{\Xi}^+$ and $\Omega^- + \bar{\Omega}^+$ global polarization vs. collision energy at $\sqrt{s_{NN}}$ = 7.7, 9.2, 11.5, 14.6, 17.3, 19.6, and 27 GeV - Global polarization of $\Xi^- + \bar{\Xi}^+$ and $\Omega^- + \bar{\Omega}^+$ seems to decrease with collision energy, with a hint of larger $\Omega^- + \overline{\Omega}^+$ polarization Z-T. Liang and X.-N. Wang, PRL 94, 102301 (2005) STAR Collaboration, Nature 548, 62 (2017). STAR Collaboration, PRL 126, 162301(2021) [4] Hui Li et al., PLB 827, 136971(2022) https://drupal.star.bnl.gov/STAR/presentations