Measurements of collective flow for light-nuclei and hyper-nuclei in Au+Au collisions from STAR

3	Xionghong HE (for STAR Collaboration)
4	Institute of Modern Physics, China
5	(Dated: November 26, 2021)
6	The yield and collective flow of light-nuclei and hyper-nuclei are sensitive to the production mech-
7	anism of those particles and the dynamics of the late-time hadronic medium produced in high-energy
8	nuclear collisions [1-3]. In particular, the production and flow of hyper-nuclei would probe the
9	hyperon-nucleon interactions especially in the high baryon density region.
10	In this talk, we report the first observation of hyper-nuclei ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H directed flow v_1 in 5-40%
11	central Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV measured by STAR experiment. The results will be
12	compared to those of the copiously produced light nuclei with similar mass such as ³ He and ⁴ He
13	measured in the same collision energy. In addition, energy dependence ($\sqrt{s_{NN}} = 3 - 39$ GeV) of
14	the mid-rapidity light nuclei v_1 and elliptic flow v_2 in Au+Au collisions will be presented. These
15	new results will be discussed within the framework of transport model + coalescence calculations.
16	At 3 GeV, it is found that hadronic interactions dominate the medium properties.

- 17 [1] P. Braun-Munzinger and B. Dönigus, Nucl. Phys. A, 987, 144 (2019).
- 18 [2] J. Steinheimer, K. Gudima, A. Botvina, I. Mishustin, M. Bleicher and H. Stöcker, Phys. Lett. B 714, 85 (2012).
- 19 [3] A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stöcker, Phys. Lett. B 697, 203 (2011).