

STAR Overview

Li Yi (for the STAR Collaboration) Yale University

STAR Detector System

June 29th, 2015

Li Yi, Hard Probes 2015

- Heavy flavor quark, primarily produced in initial hard scattering, is exposed to the medium evolution
 - Charm-medium interaction D⁰ (cū) .. light vs heavy quark: mass hierarchy of parton energy loss
 - Quarkonia J/ψ ($c\bar{c}$), Υ ($b\bar{b}$) expected to be QGP thermometer direct production thermal dissociation + recombination
- Cu+Cu, Au+Au, U+U: system size, energy dependence
- p+p: pQCD test, heavy ion reference
- p+Au, d+Au: Cold Nuclear Matter effect

Heavy vs Light Flavor Suppression

Suppression of **open charm** at high p_T in U+U collisions follows the density dependence trend of **open charm** and **pions** in Au+Au collisions.

•

D⁰ Nuclear Modification p_T Dependence

STAR

Year 2010 + 2011 Au+Au @ 200 GeV data STAR, PRL 113, 142301 (2014) STAR Au+Au → D⁰ + X @ 200 GeV Central 0-10% Nuclear Modification Factor (R data (C) TAMU SUBATECH 1.5 Torino Duke w shad. Duke w/o shad. LANL 0.5 0 2 4 6 0 p_{_} (GeV/c)

- Large suppression for $p_T > 4 \text{ GeV}/c$ Strong charm-medium interaction
- Indication of enhancement at p_T~0.7-2GeV/c
 Described by recombination models
- More precise measurement needed

Heavy Flavor Tracker

- 3 kinds of silicon detectors (PXL, IST, SSD)
 - PXL: First application of the Monolithic Active Pixel Sensors (MAPS) technology in a collider experiment
 - Decay vertex reconstruction with high resolution

Excellent resolution even at low p

Exceeded DCA Resolution Design Goal 60μm for Kaon at p= 0.75 GeV/c

-10

-20

D⁰ signal with HFT

J/ψ with Muon Telescope Detector

- Multi-gap Resistive Plate Chamber (MRPC) technology
 - Precise timing ~ 95 ps
 - Accurate hit position ~ 1 cm
- Muon identification
 - TPC track and MTD hit match
- Dimuon trigger increases low p_T accuracy

p+p @ 500 GeV 7.7 pb⁻¹ taken in 2013 $J/\psi \rightarrow \mu^+ \mu^-$

> R. Ma, Tue 15:20 HF and Quarkonium

J/ψ Yield vs Multiplicity in p+p 500 GeV star

- Clear correlation between quarkonia yields and multiplicity in pp
- Faster rise for higher p_T

R. Ma, Tue 15:20 HF and Quarkonium

- Clear correlation between quarkonia yields and multiplicity in pp
- Faster rise for higher p_T

R. Ma, Tue 15:20 HF and Quarkonium

Y Suppression

• $\Upsilon \rightarrow e^+e^-$ with BEMC

Y suppression consistent with sequential melting

$\Upsilon(1S)$ and $\Upsilon(1S+2S+3S)$:

- Peripheral: consistent with no suppression
- 0-10% central: significant suppression
- New U+U data extend Au+Au trends to higher Npart

R. Vertesi, Tue 16:20 HF and Quarkonium

Y Suppression

• $\Upsilon \rightarrow e^+e^-$ with BEMC

Y suppression consistent with sequential melting

$\Upsilon(1S)$ and $\Upsilon(1S+2S+3S)$:

- Peripheral: consistent with no suppression
- 0-10% central: significant suppression
- New U+U data extend Au+Au trends to higher Npart
 - Stay tuned for dimuon Υ with MTD

Y(2S+3S):

- No evidence in 0-60% Au+Au
- Hint of presence in 0-60% U+U data

R. Vertesi, Tue 16:20 HF and Quarkonium

- Jet yield suppression
- Jet angle diffraction in medium
- Where does jet energy go?

Semi-inclusive jet A. Schmah, Mon 15:30 Jets

Dijet imbalance K. Kauder, Tue 13:30 Jets

Semi-Inclusive Recoil Jets

Semi-inclusive yield of recoil jets with a high $p_{\rm T}$ hadron trigger

- Trigger on high p_T hadron \rightarrow Select hard process with surface bias
- Measure the recoil jets → No fragmentation bias on recoil side!
- Combinatorial jet-finding background?

A. Schmah, Mon 15:30 Jets

Mixed Event for Jet-finding Background

Central

Mixed event

- Same event
- Pick one random track per real event → add to mixed event

- Combinatorial jet background → statistically described by mixed event
- Excellent description of low p_T spectrum with mixed event
- Significant jet signal at p_T - $\rho A > 10 \text{ GeV}/c$

Comparison Central-Peripheral: I_{CP}

Large Angle Jet Scattering?

- Jet angle changes significantly in central for $5 < p_T \rho A < 8 \text{ GeV}/c$
 - Flow?
- Φ dependent normalization needed?
- Background from multiple interactions? ALICE, arXiv:1506.03984
- More studies needed!

Dijet Imbalance AJ Measurement

Locate dijet with high p_T particle cuts Reconstruct jets with low p_T particle cuts

Dijet Imbalance: p_T Softening

STAR

K. Kauder, Tue 13:30 Jets

- If AuAu dijet == pp dijet with AuAu background: Aj balanced
- If AuAu dijet != pp dijet with AuAu background: Aj imbalanced
- From $p_T = 2 \rightarrow 1 \rightarrow 0.2$ GeV/*c*, dijet gradually regains balance.
- Lost energy remerges to low p_T particles.

R=0.4

June 29th, 2015

18

STAR

K. Kauder, Tue 13:30

Jets

Dijet Imbalance: Jet Traverse Profile

p⊤>0.2 GeV/c

Sub-leading jet gets broadened.

Beam Energy Scan Program

Observables:

BES-II and lower energy d+Au and p+p collisions needed

B. Huang Wed 09:00 EW and Associated Topics

Summary and Outlook

- MTD and HFT detectors running successfully
 - J/ψ yield
 - D⁰ signal
- Y and D⁰ in higher energy density U+U collisions confirm suppression trend seen in Au+Au
- Jet probes at RHIC
 - Larger jet suppression measured at RHIC energy than LHC
 - Large jet angle diffraction
 - Jet substructure broadening and softening
- BES-II in 2019-2020

Enjoy the exciting STAR Results!

A. Schmah	Semi-inclusive Jets	Mon 15:30
K. Kauder	Dijet imbalance	Tue 13:30
H. Qiu	D ⁰ in Au+Au	Tue 13:30
R. Ma	J/ψ in p+p	Tue 15:20
R. Vertesi	Υ in U+U	Tue 16:20
B. Huang	Dilepton in BES	Wed 09:00
A. Quintero	D ⁰ Finding in Au+Au	Poster session

STAR Physics Programs

Period	Detectors	Collisions
2001-2009	TPC + BEMC	AuAu, dAu, CuCu, pp
2010-2011 (BES-I)	TPC + BEMC + TOF	AuAu, pp
2012	TPC + BEMC + TOF	UU, CuAu, pp
2013	TPC + BEMC + TOF + MTD	рр
2014 (BES-I)	TPC + BEMC + TOF + MTD + HFT	AuAu , He ³ Au
2015	TPC + BEMC + TOF + MTD + HFT	pp, pAu, pAl

Heavy flavor, jet quenching, beam energy scan..

Beam Energy Scan Program

Observables:

- 1st order phase transition
 (1) Azimuthally sensitive HBT
 (2) Directed flow v₁

 Partonic vs. hadronic dof
- (3) R_{AA}: Nucl. Mod. Fact.
- (4) Charge separation
- (5) v₂ NCQ scaling

Critical point, correl. length(6) Fluctuations

Chiral symmetry restoration

(7) Di-lepton production

BES-II and lower energy d+Au and p+p collisions needed

B. Huang Wed 09:00 EW and Associated Topics

Dielectron in Beam Energy Scan-I

- 200 GeV to 19.6 GeV excess at M_{ee} <1.1 GeV/c² described by ρ meson in-media broadening
- More excess expected from model due to total baryon density increase at lower energy (< 20 GeV)
- BES-II needed for more statistics below 20 GeV

B. Huang Wed 09:00 EW and Associated Topics

STAR

Muon Telescope Detector

- Multi-gap Resistive Plate Chamber (MRPC) technology
 - Precise timing ~ 95 ps
 - Accurate hit position ~ 1 cm
- Muon identification
 - TPC track and MTD hit match

STAR * Open Charm with HFT

Heavy Flavor Tracker
 3 silicon detectors (PXL, IST, SSD)

- Direct reconstruction of heavy flavor hadron decay vertex with high resolution $\sigma = 6.2 \ \mu m (PXL)$
- $D^0(c\bar{u}) \rightarrow K^-\pi^+$

H. Qiu, Tue 13:30 HF and Quarkonium

rest frame life time ~120 μm

• Λ_c^+ (udc) \rightarrow p K⁻ π^+ rest frame life time ~60 μ m

D⁰ signal with HFT

II, IIUIUIIIONOU LU

June 29th, 2015

Do we understand J/ψ in pp?

- NRQCD long-distance matrix at Next-to-Leading Order from world-data fitting.
 Phys. Rev. D84 (2011) 051501
- Color Glass Condensate effective theory to calculate cross section at low p_T

Phys.Rev.Lett. 113 (2014) 192301

- Good data-theory agreement over $0 < p_T < 30 \text{ GeV}/$
 - Caveat: direct J/ψ in model, but inclusive J/ψ for data. ~40% feed-down contribution from excited $c\overline{c}$ states and B hadrons. **PRD64 (2001) 094015**

 $(dN_{ch}/d\eta)/\langle dN_{ch}/d\eta \rangle$

- Stronger-than-linear rise of open charm production vs event activity.
- Similar behavior seen for inclusive J/ψ at both mid- and forward-rapidity.
- Several ideas on the market:
 - PYTHIA 8: c and b quarks produced in Multi-Parton-Interaction -> underestimate yield at large multiplicity
 - Percolation model: string screening -> quadratic rise at high multiplicity
 - Hard process is associated with larger gluon radiation
- Collective effects in high-multiplicity pp collisions?
- Do we see similar or different behavior at RHIC?

Direct virtual photon yield

Nuclear Modification Factor in BES-I

- Jet quenching disappear?
- Cold nuclear effect?
- BES-II and lower energy d+Au and p+p collisions

Energy dependence of dilepton excess

STAR

arXiv:1501.05341

- > 19.6 GeV consistent with SPS results.
- > Excess shape at low mass well described by rho in-medium broadening.
- Excess yields (after detector acceptance correction) are sensitive to early system lifetime: integrated over duration at the high temperature.

- $I_{AA}^{\pi 0-h}$ and I_{AA}^{Ydir-h} show similar and strong suppression
- At low z_T , data suggests lost energy may start to be recovered (with large uncertainty)

Semi-Inclusive Recoil Jets

Semi-inclusive yield of jets recoiling from a high p_T hadron trigger

$$\frac{1}{N_{trig}^{h}} \frac{dN_{jet}}{dp_{T,jet}} = \frac{1}{\sigma^{pp \to h+X}} \frac{d\sigma^{pp \to h+jet+X}}{dp_{T,jet}}$$
Measured Calculable in fixed-order pQCD

- Trigger on high p_T hadron \rightarrow Select hard process with surface bias
- Measure the recoil jets → No fragmentation bias on recoil side!
- How to deal with combinatorial jet-finding background?

Mixed Event Generation for Jets

Jet Substructure

