

Longitudinal spin transfer of the $\Lambda(\Lambda)$ hyperon in the polarized p+p collisions at $\sqrt{s} = 200$ GeV at RHIC-STAR

Yi Yu (于毅), for the STAR Collaboration

Shandong University (山东大学)

Outline

- Motivation.
- Λ and $\overline{\Lambda}$ reconstruction.
- Longitudinal spin transfer D_{LL} vs hyperon p_T and fragmentation z.
- Summary.

Motivation

- Nucleon spin structure (from DIS and p+p)
 - Spin sum rule: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$.
 - Valence quark helicity distributions are well known.
 - Poor knowledge on strange quark.

Why choose Λ ?

- s quark is expected to carry a large fraction of Λ spin.
- The weak decay of Λ enables experimental measurability of its polarization.

```
dN \sim (1 + \alpha P_{\Lambda} \cos\theta^*) d\cos\theta^*
\alpha: weak decay parameter of \Lambda
P_{\Lambda}: the polarization of \Lambda
```


Yi Yu, DIS2022

Longitudinal spin transfer D_{II} in p+p collisions **Prediction of** D_{LL} at RHIC energy **Definition of** D_{LL} **in p+p collisions** D. de Florian, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 81, 4 (1998). $D_{LL}^{\Lambda} \equiv \frac{d\sigma(p^+p \to \Lambda^+X) - d\sigma(p^+p \to \Lambda^-X)}{d\sigma(p^+p \to \Lambda^+X) + d\sigma(p^+p \to \Lambda^-X)} = \frac{d\Delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$ $\sqrt{s}=500 \text{ GeV}$ $p_T > 13 \text{ GeV}$ A^{Λ} $d\Delta\sigma^{\Lambda} = \sum \int dx_a dx_b dz \Delta f_a(x_a) f_b(x_b) \Delta\sigma(ab \to cd) \Delta D^{\Lambda}(z)$ 0.2 scen. 3 helicity distribution pQCD calculable polarized FF 0.1 scen. proton spin

 \bullet D_{LL} can shed light on both polarized fragmentation **scenario 1:** only s quark can contribute to Λ polarization. functions (FFs) and the helicity distributions of $s(\bar{s})$

 $\Delta f(x) = f^+(x) - f^-(x)$

momentum

scenario 2: u and d quarks have the same contribution to polarized Λ but with an opposite sign from s quark.

scenario 3: u, d and s quarks have the same contribution to the polarized Λ .

Longitudinal spin transfer D_{IL} in p+p collisions **Prediction of** D_{LL} at **RHIC energy Definition of** D_{LL} **in p+p collisions** D. de Florian, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 81, 4 (1998). $D_{LL}^{\Lambda} \equiv \frac{d\sigma(p^+p \to \Lambda^+X) - d\sigma(p^+p \to \Lambda^-X)}{d\sigma(p^+p \to \Lambda^+X) + d\sigma(p^+p \to \Lambda^-X)} = \frac{d\Delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$ √s=500 GeV A^{Λ} 5 **RHIC** kinematics $\sqrt{s} = 200 \text{ GeV}, \ R = 0.4$ 4 $d\Delta\sigma^{\Lambda} = \sum \int dx_a dx_b dz \Delta f_a(x_a) f_b(x_b) \Delta\sigma(ab \to cd) \Delta D^{\Lambda}(z)$ 0.2 scen. 3 (%) $D_{LL}^{ m jet\Lambda}$ helicity distribution pQCD calculable polarized FF 0.1 scen. proton spin

 $\Delta f(x) = f^+(x) - f^-(x)$

- \bullet D_{LL} can shed light on both polarized fragmentation functions (FFs) and the helicity distributions of $s(\bar{s})$
- \bullet D_{LL} vs z can provide direct probe to the polarized fragmentation function

5

scenario 3: u, d and s quarks have the same contribution to the polarized Λ .

Relativistic Heavy Ion Collider

- ✦ First and only polarized p+p collider in the world.
- Collides both transversely and longitudinally polarized proton beams at $\sqrt{s} = 200$ and 500/510 GeV.
- Ideal for studying nucleon spin structure.

Dataset with longitudinally polarized p+p collision

Year	\sqrt{s} (GeV)	$L_{int}(pb^{-1})$	P _{beam}	
2009	200	19	57% / 57%)
2015	200	52	52% / 56%	f ^u
2012	510	82	50% / 53%	
2013	510	300	51% / 52%	

sed in this analysis

The Solenoidal Tracker At RHIC

05-04 2022

Time Projection Chamber (TPC)

- $|\eta| < 1.3$ and $0 \le \phi \le 2\pi$.
- Tracking and particle identification.

✦ Time of Flight detector (TOF)

- $|\eta| < 1.0$ and $0 \le \phi \le 2\pi$.
- Particle identification.

Electromagnetic Calorimeter (EMC)

- Barrel EMC (BEMC): $|\eta| < 1.0$ and $0 \le \phi \le 2\pi$.
- Endcap EMC (EEMC): 1.086 < η < 2.0 and 0 ≤ ϕ ≤ 2 π .
- Photon, π^0 , jet ...
- Serve as the trigger detectors.

Vertex Position Detector (VPD)

- $4.24 < |\eta| < 5.1$.
- Determine the primary vertex position.
- Monitor the relative luminosity.

$\Lambda(\bar{\Lambda})$ hyperons selection

- Select hard scattering events using a jet trigger based on the energy deposits in the EMC
- $\Lambda(\bar{\Lambda})$ reconstruction $\begin{array}{l} \Lambda \to p + \pi^- \\ \bar{\Lambda} \to \bar{p} + \pi^+ \end{array}$
 - Apply a set of topological cuts to reduce the background.
 - Side-band method is used to estimate the residual background.

✦ Require hyperons to be associated with a jet

• Jets are reconstructed with anti- k_T algorithm (R = 0.6) using TPC tracks and EMC energy deposits.

•
$$\Delta R = \sqrt{(\eta_{jet} - \eta_{\Lambda})^2 + (\phi_{jet} - \phi_{\Lambda})^2} < 0.6$$

Measurements of D_{LL}

♦ D_{LL} is measured with the asymmetry of $\Lambda(\bar{\Lambda})$ yields as a function of $\cos\theta^*$

 $D_{LL} = \frac{1}{\alpha P_{beam}} < \cos\theta^* > \frac{N^+ - R_L N^-}{N^+ + R_L N^-}$ Acceptance canceled

firstly used in STAR, Phys. Rev. D 80, 111102 (2009).

- $N^{+(-)}$: the Λ yields with positive (negative) beam helicity.
- R_L : relative luminosity measured by the VPD.
- α : decay parameter of Λ .
- P_{beam} : the beam polarization.
- $\bullet \delta_{LL}$ of K_S^0 as a null check
 - Same method as D_{LL} .
 - Using an artificial decay parameter $\alpha = 1$.
 - Consistent with 0 as expected.

STAR, Phys. Rev. D 98, 032011 (2018).

DLL -2 2 DLL -2

Yi Yu, DIS2022

Previous D_{LL} vs p_T results with STAR 2009 data

- Statistically limited.
- In agreement with models.

Theoretical models, when fit to data, provide constraints to strange quark and anti-quark polarization.

New D_{LL} vs p_T results with STAR 2015 data

 D_{LL} as a function of hyperon p_T , with small offset applied for better visibility

- \blacklozenge The hyperon p_T range is extended up to ~ 7 GeV/c.
- \bigstar Results show consistency between Λ and $\overline{\Lambda}$.
- ◆ Data are in agreement with various scenarios within uncertainties.
- ✦ Most precise measurements to date.

New D_{LL} vs p_T results with STAR 2015 data

 D_{LL} as a function of hyperon p_T , with small offset applied for better visibility

- The hyperon p_T range is extended up to ~ 7 GeV/c.
- \blacklozenge Results show consistency between Λ and Λ .
- ◆ Data are in agreement with various scenarios within uncertainties.
- ✦ Most precise measurements to date.

2015 vs 2009

Measurement of D_{II} vs z

Definition of z
$$z = \frac{\overrightarrow{p}_{\Lambda} \cdot \overrightarrow{p}_{jet}}{\overrightarrow{p}_{jet} \cdot \overrightarrow{p}_{jet}}$$

 $\blacklozenge D_{LL}$ vs z can provide direct information for polarized fragmentation functions.

Correct the detector z to particle z

- In STAR, jets are reconstructed using TPC tracks and EMC energy deposits.
- Theoretical studies use all the particles for the jet. **particle jet**

• Need to correct the "detector z" (based on detector jet) to "particle z" (based on particle jet) in our measurement.

Correction of z

- 1. Obtain the detector z and calculate the D_{LL} in each detector z bin
- 2. Correct the average of detector z to particle z
 - Monte Carlo sample: pythia6 + geant3.
 - Correlate detector jet with particle jet.
 - Get the mean value of particle z in each detector z bin.

D_{II} vs z results with STAR 2015 data

Theory curves: Z.-B. Kang, K. Lee, and F. Zhao, Phys. Lett. B 809, 135756 (2020).

- \blacklozenge First measurements of D_{LL} vs z in polarized p+p collisions.
- $\bullet D_{LL}$ results directly probe the polarized fragmentation functions.
- \blacklozenge The uncertainties are larger than the model variations of polarized fragmentation functions.

Summary

- ★ The measurements of D_{LL} in polarized p+p collisions can provide insights into polarized FFs and the helicity distributions for strange quarks.
- Longitudinally polarized p+p data taken in 2015 at 200 GeV at STAR provide about two times the statistics as compared to previous D_{LL} measurements using 2009 data.
- The new D_{LL} vs p_T results for $\Lambda(\bar{\Lambda})$ are consistent with previous measurements and also consistent with model calculations.
- The first measurement of D_{LL} vs z in p+p collision is reported, which can provide constraints to the polarized fragmentation functions.
- Larger data samples of p+p collisions at 510 GeV taken in 2012 and 2013 will improve the precision of D_{LL} measurement significantly.

Back up

05-04 2022

Yi Yu, DIS2022

systematic uncertainties

- Decay parameter α : 1.9% relative uncertainties
- Beam polarization: 3.0% relative uncertainties
- Relative luminosity: 0.00186 for all p_T and z bins (dominated at low p_T and z bins) \bullet
- Background fraction: small contribution \bullet
- The trigger bias: dominated at high p_T and z bins

