Strangeness production in Au+Au collisions at $\sqrt{s_{NN}} = 7.7 - 19.6$ GeV from BES-II with the STAR experiment Yi Fang (fy21@mails.tsinghua.edu.cn), Tsinghua University, for the STAR Collaboration

Abstract

A primary goal of the Beam Energy Scan (BES) program at RHIC is to search for the QCD critical point and the onset of deconfinement. Strangeness production has been suggested as a sensitive probe to the early dynamics of the deconfined matter created in heavy-ion collisions. The rapidity density of (anti-) strange baryons may give insight into the baryon stopping mechanism. Furthermore, the collision energy threshold of QGP production in heavy-ion collisions can be explored by measuring the colliding energy dependence of baryon-to-meson enhancement. In particular, results from BES-I indicate potential changes in the Ω/ϕ ratio at and below 11.5 GeV, which may be indicative of a change in the underlying strange quark dynamics. However, the limited statistics prohibit a strong conclusion.

During the second phase of BES program (BES-II), STAR has accumulated high statistics data in Au+Au collisions, which can help reduce the uncertainties in the strange hadron measurements, in particular for the multi-strange hadrons. In this poster, we will present STAR measurements of strange hadron K_s^0 , Λ , Ξ and Ω production in Au+Au collisions at $\sqrt{s_{NN}} = 7.7$, 9.2, 11.5, 14.6 and 19.6 GeV from BES-II, including transverse-momentum and rapidity spectra, Ω/ϕ ratios and nuclear modification factors. The implications of the collision dynamics are discussed.

Motivation

Rapidity density of strange baryons may give insight into the baryon stopping mechanism.

R	apidity s	spectra of <i>k</i>	$K_s^0, \Lambda, \Xi a^{\dagger}$	$\sqrt{s_{NN}} = 1$	7.7, 14.6	and	19.6 G	eV
Ap/Np	Au+Au 7.7 GeV STAR Preliminary	Au+Au 7.7 GeV		7.7 GeV	Au+Au 7.7 GeV STAR Preliminary		Au+Au 7.7 GeV STAR Preliminary	BES-II 0-5% 5-10% 10-20%

Energy dependence of Ω/ϕ ratios explore the collision energy threshold of QGP production in heavy-ion collisions.

STAR detector and particle reconstruction

- Particle identification with dE/dx
- Strange particles are reconstructed via their hadronic decay channel to π , K or p
- Large number of strange particles allow multidifferential measurements
- +Au 19.6GeV 0-80%, lyl<0.5 > 0.2 GeV/c $p_> > 0 \text{ GeV}/c$ 1.11 1.12 1.13 1.14 0.44 0.46 0.48 0.5 0.52 0.54 0.5 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Mass $(\pi^+\pi^-)$ (GeV/ c^2) Mass $(p\pi)$ (GeV/ c^2) p__(GeV/c) Au+Au $\sqrt{s_{NN}} = 19.6 \text{ GeV } \Omega^{-} + \overline{\Omega}^{+}$ Au+Au $\sqrt{s_{NN}}$ = 19.6 GeV (BES-II) = 19.6 GeV (BES-II) 0-80%, ly l<0.5 0-80%, lyl<0.5 *b* > 0.4 GeV/*c* p > 0 GeV/c p > 0.6 GeV/ccomb. b.a.

Large and uniform acceptance

Excellent particle identification

upgrade compared to BES-I:

to 1.5

iTPC (STAR Inner Sector TPC)

 \checkmark Larger rapidity coverage — $|\eta|$ from 1.0

Better PID — improved dE/dx resolution

Lower $p_{\rm T}$ limit — from 120 to 60 MeV/c

- Rapidity spectra of anti-baryons($\overline{\Lambda}, \overline{\Xi}^+$) and mesons(K_s^0) are Gaussian-like distributions.
- Rapidity distribution of baryons (Λ , Ξ^{-}) are wider than that of anti-baryons (Λ, Ξ^+)

 $p_{\rm T}$ spectra of strange particles in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV

- Low $p_{\rm T}$ extrapolation: Levy function for ϕ , Boltzmann function for $K_{\rm S}^0$, Λ , Ξ and Ω
- Boosted Decision Trees (BDT) is applied to optimize the signal extraction when the background is large.

Extra contributions from stopped baryons.

NA49, PRC 78, 034918 (2008)

Similar trends from $\sqrt{s_{NN}} = 7.7$ to 19.6 GeV are observed by NA49.

Nuclear modification factor

 $\left[(dN/dp_T)/\langle N_{
m coll}\,
angle
ight]_{
m central}$ $R_{\rm CP} =$ $[(dN/dp_T)/\langle N_{
m coll}\,
angle]_{
m peripheral}$

- $R_{\rm CP}$ tends to be flat and larger than unity at $p_{\rm T}$ > 2 GeV/c for energies $\sqrt{s_{NN}} \ge 14.6$ GeV.
- $R_{\rm CP}$ continues to increase beyond $p_{\rm T} = 2$ GeV/c at $\sqrt{s_{NN}}$ \leq 11.5 GeV.
 - ✓ Quark coalescence
 - \checkmark Radial flow
 - ✓ Cronin effect
- Stronger enhancement for Ω and Ξ compared to Λ and K_s^0 .
- $R_{\rm CP}$ shows minor rapidity

Centrality dependence of Ω/ϕ ratio at different energies

The Ω / ϕ ratio at intermediate $p_{\rm T}$ show strong enhancement in central Au+Au collisions compared to peripheral collisions from $\sqrt{s_{NN}} = 7.7$ to 19.6 GeV.

✓ Quark coalescence

✓ Cronin effect

✓ Radial flow

dependence.

2 3 4 5 1 2 3 2 3 4 5 *p*_{_} (GeV/*c*)

The STAR Collaboration

https://drupal.star.bnl.gov/S

TAR/presentations

Summary

- Precise strangeness measurements with extended $p_{\rm T}$ and rapidity compared to BES-I at $\sqrt{s_{NN}} = 7.7 - 19.6$ GeV.
- Ω/ϕ enhancement observed in central Au+Au collisions at $\sqrt{s_{NN}} \ge 7.7$ GeV.
- Rapidity spectra of anti-baryons($\overline{\Lambda}, \overline{\Xi}^+$) and mesons(K_s^0) are Gaussian-like distributions, while the rapidity distribution of baryons(Λ, Ξ^{-}) are wider than that of anti-baryons.
- $R_{\rm CP}$ shows stronger enhancement for Ω and Ξ compared to Λ and $K_{\rm S}^0$. Outlook
- Strangeness measurements at $\sqrt{s_{NN}}$ = 9.2, 11.5 and 17.3 GeV in BES-II are on-going.

Supported in part by the Science

Office of 第二十届全国中高能核物理大会, 上海

