

KRAKOW, POLAND, April 4-10

Strange hadron production in Au+Au collisions at RHIC Beam Energy Scan

Yingjie Zhou, for the STAR Collaboration Central China Normal University

Strangeness production has been suggested as a sensitive probe into the early-time dynamics of the nuclear matter created in heavy-ion collisions, especially at high baryon density.

This poster will report on the measurements of strange hadron production in Au+Au collisions at $\sqrt{s_{\rm NN}}=3$ GeV. The results include the transverse mass spectra, particle ratios, and their centrality dependence of strange hadrons (K^- , K_S^0 , ϕ , Λ , Ξ^-). These new results will be compared with those from higher collision energies and discussed within the framework of thermal and transport model calculations.

Supported in part by

Introduction

Baryon Chemical Potential μ_B

- Au+Au collisions @ 3GeV, where are we on this phase diagram? What are the properties of the medium?
- What is the strangeness production mechanism, especially at high baryon density region?
- We focus on strange particles: $K^-, K_S^0, \phi, \Lambda, \Xi^-$

- Decay channels: $\Lambda \to p\pi^-, K_S^0 \to \pi^+\pi^-$
- KF Particle package is used to improve the significance
- The combinatorial background is reconstructed by the rotation method
- Low p_T extrapolation: Blast-Wave function
- Levy, $m_{\rm T}$ -exponential functions to estimate systematic uncertainty

Strangeness production vs $\langle N_{Part} \rangle$

- Same dependence on the number of participating nucleons:
 - Strangeness yield (K⁻, K_S⁰, ϕ , Λ) $\propto \left\langle N_{part} \right\rangle^{\alpha}$, $\alpha = 1.42 \pm 0.04$
- →Universal centrality dependence of strangeness production, not for proton
- $\Rightarrow \Xi^-$ seems to deviate from the scaling trend
 - Possibly because it is produced below NN-thresholds

Strangeness production vs $\sqrt{s_{\rm NN}}$

- The lower production yield of K_S^0 , Λ , Ξ^- at 3 GeV: local strangeness conservation may be required
- Ξ^- produced below NN-thresholds
- Following the world trend

J. Cleymans, arXiv:nucl-th/9704046 Phys. Rev. C 102 (2020) 34909 e-Print: 1906.03732 Phys. Rev. Lett. 108, 072301

Thermal model calculations give:

$$\frac{N(\Lambda)}{N(K_S^0)} \propto \exp(\frac{\mu_{\rm B}(1-\sigma_{\rm S})}{\rm T})$$

$$\sigma_S = \mu_S / \mu_B$$

Baryon chemical potential driven?

- At high energies, the ratios increase verse $p_{\rm T}$ and peak at about 3 GeV/c and then fall for higher $p_{\rm T}$
- At low energies, the ratio increates much faster than at higher energies

Strangeness production vs $\sqrt{s_{\rm NN}}$

 r_c : correlation length, radius of the volume inside which the production of particles with open strangeness is canonically conserved

Data compilation: arXiv: 2108.00924 STAR: Phys. Rev. C 102 (2020) 34909 HADES: Eur. Phys. J. A (2016) 52: 178

UrQMD1: Prog. Part. Nucl. Phys. 41 (1998) 225-370

Thermal CE: Phys. Lett. B 603, 146 (2004)

- At low energies, strangeness production is rare, local strangeness conservation may be required
 - CE calculations with different r_c are needed to describe ϕ/K^- and ϕ/Ξ^- , respectively
 - GCE underpredicts the data at 3 GeV
- Default UrQMD failed to describe the measurement data at low energies
- Transport models with high-mass resonance decay to ϕ and Ξ^- can reasonably describe data at low energies

Summary and outlook

- Strangeness production in Au+Au 3 GeV collisions
 - ϕ/K^- , ϕ/Ξ^- and Λ/K_S^0 show a strong effect of canonical suppression
- Precise measurements of ϕ/K^- and ϕ/Ξ^- on the centrality dependence, Λ/K_S^0 on the p_T , y dependence from the STAR BES-II, to constrain the model calculations
 - iTPC+eTOF extend the low $p_{\rm T}$ reach to reduce systematic uncertainties
 - 2B 3GeV-run will reduce the statistical uncertainty by a factor of 3

Yingjie Zhou 5