

Strange Hadron Production in Au+Au Collisions at RHIC Beam Energy Scan

Yingjie Zhou, for the STAR Collaboration Central China Normal University

Supported in part by

- Introduction
- STAR Fixed Target (FXT)
- Results of strange hadron production
 - $p_{\rm T}$ spectra
 - Rapidity distribution
 - Yield ratio
 - Kinetic freeze-out properties
- Summary

Outline

Introduction

Baryon Chemical Potential μ_B

- RHIC BES covers a wide region of baryon density - Look for the onset of de-confinement, phase boundary, and location of possible critical point
- STAR FXT mode $\sqrt{s_{NN}} = (3.0 7.7) \text{ GeV}$
 - High baryon chemical potential μ_B (~400 MeV up to \sim 750 MeV) allows us to study the properties of high baryon density matter
 - Strangeness can be used to study medium properties at low collision energies

FXT setup at STAR

In C.M. frame, $y_{target} = -1.045$ for the 3 GeV collisions

- 260M events for Au+Au FXT at $\sqrt{s_{NN}} = 3$ GeV (year 2018)

Particle identification and reconstruction

TPC

TOF

- TPC (dE/dx) and TOF (β) for pion, kaon and proton identification
- **Reconstruct the short-lived particle** $\Xi^-, \phi, \Lambda, K_S^0$ via a hadronic decay channel
 - $-\phi \to K^+ K^-, \Xi^- \to \Lambda(p\pi^-) + \pi^-,$ $K_{\rm S}^0 \to \pi^+ \pi^-$
 - KF Particle package is used to improve the signal significance
- The combinatorial background is reconstructed by the rotation method

KF Particle Finder: M. Zyzak, Dissertation thesis, Goethe University of Frankfurt, 2016

- rapidity regions

• Tracking efficiency and detector acceptance are estimated with GEANT simulations embedded into real events

• Λ and K_{S}^{0} invariant yields in 0-10% centrality for various

Low $p_{\rm T}$ extrapolation: Blast-Wave function $\frac{d^2 N}{2\pi p_{\rm T} dp_{\rm T} dy} = A \int_0^R r dr m_{\rm T} \times I_0(\frac{p_{\rm T} \sinh \rho(r)}{T_{\rm kin}}) K_1(\frac{m_{\rm T} p \cosh \rho(r)}{T_{\rm kin}})$

 $T_{\rm kin}$: the kinetic freeze-out temperature $\langle \beta_T \rangle$: average transverse radial flow velocity n: the exponent of flow velocity profile, n=1 I_0 and K_1 are from Bjorken Hydrodynamic assumption

Alternative fit functions are used in order to estimate the systematic uncertainty in dN/dy

Centrality and rapidity dependence of yields

Rapidity dependent yields obtained from integrating data and Blast-wave function (or m_T exponential function) fits of spectra for the unmeasured region

- y_{cm} range will be extended by eTOF & iTPC upgrade

UrQMD reproduces the yields of Λ except in the 40-60% centrality bin, but overestimates Kaons, Ξ^- and underestimates ϕ mesons

Centrality and rapidity dependence of particle ratio

- and light nuclei production mechanisms

Comparison with hypernuclei to light nuclei ratios help us gain insight into hypernuclei

See talk from Yuanjing Ji, Jun 14, 2022, 11:30 AM

Strangeness production vs $\langle N_{Part} \rangle$

Universal centrality dependence of strangeness production

Increase with centrality

Strangeness yield (K⁻, K⁰_S, ϕ , Λ) $\propto \langle N_{part} \rangle^{\alpha}$, $\alpha = 1.42 \pm 0.04$

• Ξ^- seems to deviate from the scaling trend

- Ξ^- is different from other hadrons due to its multi-strangequark content and sub-threshold production

Proton has a different trend

Strangeness production vs

Data compilation: C. Blume Prog.Part.Nucl.Phys. 66 (2011) 834-879 HADES: Phys.Lett.B 793 (2019) 457-463, 2019

S_{NN}

- STAR FXT dN/dy consistent with the Λ , K_S^0 trends demonstrated by published data
- First sub-threshold Ξ^- measurement in Au+Au collisions
- Expect more results at low energies from additional high statistics BES II data sets

Particle ratios vs $\sqrt{}$

• Local strangeness conservation is required! → GCE to CE transition!

• Default UrQMD failed to describe the measurement at

Transport models with high-mass resonance decay to ϕ and Ξ^- (modified UrQMD and SMASH) can reasonably describe data at low energies

 r_c : correlation length, radius of the volume inside which the production of particles with open strangeness is canonically conserved

Data compilation: STAR: Phys. Lett. B 831 (2022) 137152, Phys. Rev. C 102 (2020) 34909 HADES: Eur. Phys. J. A (2016) 52: 178 UrQMD¹: Prog. Part. Nucl. Phys. 41 (1998) 225-370 UrQMD²: J. Phys. G: Nucl. Part. Phys. 43 015104 Thermal CE: Phys. Lett. B 603, 146 (2004)

Kinematic freeze-out properties

- Kinetic freeze-out temperature (T_{kin}) of Λ is systematically higher than that of K_S^0 at 3 GeV
- T_{kin} of Λ and K_{S}^{0} at 3 GeV is lower than π, K, p at higher energy collisions Similar observations for protons and deuterons, implying different EOS at freeze-out

Phys. Rev. Lett. 108 (2012) 72301 Phys. Rev. C 102 (2020) 34909

- Presented measurements on strangeness production in 3 GeV Au+Au collisions - Precise centrality & rapidity dependence of yields
 - ϕ/K^- and ϕ/Ξ^- show a strong effect of canonical suppression Phys. Lett. B 831 (2022) 137152
 - Λ and K_{S}^{0} spectra indicate lower kinetic freeze-out temperature than π, K, p at higher energy collisions
- At 3 GeV, the measured v_2 for all particles are negative and the NCQ scaling breaks, especially for positive charged particles Phys. Lett. B 827 (2022) 137003
- The suppression of C_4/C_2 is consistent with fluctuations driven by baryon number conservation which indicates a hadronic interaction dominated region in the top 5% central Au+Au collisions at 3 GeV Phys. Rev. Lett. 128 (2022) 202303
- The freeze-out parameter (T_{kin}) of deuteron is systematically higher than that of proton at 3 GeV, which is different from higher energies Hui Liu, QM 2022
- All results from 3 GeV Au+Au collisions: particle production mechanism dominated by hadronic interactions

Summary

Outlook

- determine T_{chem} and μ_B
- High statistics data in STAR BES II $\sqrt{s_{NN}} = 3 27$ GeV, iTPC+eTOF
 - Extract freeze-out parameters
 - Analyze baryon correlation functions
 - Analyze hyper-nuclei production and collectivity
 - And more

Strange hadron yields together with π, K, p will be used for chemical equilibrium models to

