

Beam Energy Dependence of Hypertriton Production and Lifetime Measurement at RHIC STAR

Yuhui Zhu^{1,2} for the STAR Collaboration

Shanghai Institute of Applied Physics, CAS (SINAP)
Brookhaven National Laboratory, STAR Group

7th International Workshop on Critical Point and Onset of Deconfinement November 7-11, 2011 CCNU, Wuhan, China

- Background and Motivation
- Analysis Method and Preliminary Results
 - ${}_{\Lambda}^{3}H+{}_{\overline{\Lambda}}^{3}\overline{H}$ Raw Yield in Run 10 Data(7.7, 11.5, 39, 200 GeV)
 - $\binom{3}{\Lambda}H + \frac{3}{\Lambda}\overline{H} / \binom{3}{\Pi}H + \frac{3}{\Pi}\overline{H}$ Raw Ratio in Run 10 Data
 - Raw Lifetime Measurement
- Conclusions and Outlook

The first observation of hypernucleus is made by Danysz and Pniewski in 1952 in a cosmic ray experiment

M. Danysz and J. Pniewski, Phil. Mag. 44 (1953) 348

It was finally confirmed that the hyper fragment composed a bound Lambda

• A New Dimension to the World of Nuclei

Hypernucleus provides an indirect way to study Y-N interaction

Physics from BES data

CPOD 2011 @ Wuhan, China

6

Yuhui Zhu

Thursday, November 10, 11

Strangeness Population Fa

$$S_3 = \frac{3}{\Lambda} \mathrm{H} / (^3 \mathrm{He} \times \Lambda / p)$$

PRL 95(2005) 182301, PRC 74(2006) 054901, PRD 73(2006)014004

0

Lifetime Measurement of ${}^3_{\Lambda}H$

STAR Latest Measurement

Run4 200GeV	minbias	22M
Run4 200GeV	central	23M
Run7 200GeV	minbias	68M

$$182_{45}^{89} \pm 27 \, ps$$

CPOD 2011 @ Wuhan, China

8

Experimental Analysis

CPOD 2011 @ Wuhan, China

9

Yuhui Zhu

Thursday, November 10, 11

• Bird's eye view of RHIC

The Solenoid Tracker At RHIC (STAR)

• STAR Overview

CPOD 2011 @ Wuhan, China

Yuhui Zhu

Analysis

• Dataset and Event-level Cuts

Energy	Trigger	Vz	RefMult	Events
7.7GeV	minbias	<70cm	>4	4.IIM
11.5GeV	minbias	<50cm	>5	11.01M
39GeV	minbias	<40cm	>7	141.5M
200GeV	minbias	<30cm		199.03M
200GeV	central	<30cm		124.19M

• Track-level Cuts

nHitsFit	nHitsDedx	nHitsFit/nHitsPoss	
>25	>15	>0.52	

• V0 cuts

V0 Parameters	Cuts	V0 Par	Cuts
DcaV0	<0.6cm	Dca2	>0.8cm
Dcalto2	<lcm< td=""><td>V0DecLen</td><td>>2.4cm</td></lcm<>	V0DecLen	>2.4cm

• Technique

Secondary vertex finding technique

$$_{\Lambda}^{3}H \rightarrow {}^{3}He + \pi^{-}$$

• ^{3}He

Rigidity >IGeV/c && Dca < Icm && |ZHe3| < 0.2

	7.7	11.5	39	200(minbias)	200(central)
^{3}He	9909	7623	7640	4963	7402
$^{3}\overline{He}$	0	0	155	1997	2842

$$Z = \ln(\frac{dE / dx^{data}}{dE / dx^{Bichsel}})$$

Theory curve: Phys. Lett. B 667 (2008) 1

• π^{-}

 $|n\sigma_{\pi}| < 2$

Signal Extraction

• ${}_{\Lambda}^{3}H + {}_{\overline{\Lambda}}^{3}\overline{H}$ Raw Yields

Run 10 Combined Raw Signal $(^{3}_{\Lambda}H+^{3}_{\overline{\Lambda}}H)$

Combine all the results to prove the correctness of separate signals

Only minbias

minbias+central

Beam Energy Dependence

Combine Data(Uncorrected Yield)

CPOD 2011 @ Wuhan, China

Yuhui Zhu

- ${}^{3}_{\Lambda}H+{}^{3}_{\overline{\Lambda}}\overline{H}$ raw yield is derived in 7.7, 11.5, 39, 200GeV data.
- Beam energy dependence of $({}^{3}_{\Lambda}H + {}^{3}_{\overline{\Lambda}}\overline{H})/({}^{3}He + {}^{3}\overline{He})$ uncorrected ratio is shown.
- Raw lifetime measurement of combined BES data is shown.
- Further efficiency correction will be applied to obtain physical quantities (yields and lifetime)
- New datasets from Run II data(I9.6GeV, 27GeV) and 200 GeV will be added in the future.

