Status of the Analyses for the Proton Higher-Order Fluctuations in the STAR Fixed-Target Program from $\sqrt{s_{NN}} = 3.2$ to 7.7 GeV

UNIVERSITY OF CALIFORNIA

Zachary Sweger (for the STAR Collaboration) University of California, Davis

1. Introduction

Critical Fluctuations

- Fluctuations in conserved charges (such as baryon number) expected near critical point
- Proton number is a proxy for baryon number
- Measure cumulants of net-proton number distributions as a function of collision energy
- QCD calculations predict non-monotonic cumulants vs $\sqrt{s_{NN}}$ if close to critical point

shown in red box

tance up to $\sqrt{s_{NN}} = 4.5 \text{ GeV}$

be away from midrapidity

2. The STAR Fixed-Target Program

- Relativistic Heavy-Ion Collider (RHIC) can only collide Au+Au down to $\sqrt{s_{NN}} = 7.7 \text{ GeV}$
- Gold target installed on west end of STAR TPC
- New data at $\sqrt{s_{NN}} = 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, 7.7$ GeV

$\sqrt{s_{NN}}~({ m GeV})$	3.2	3.5	3.9	4.5	5.2	6.2	7.2	7.7
$\mu_B ~({ m GeV})$	0.70	0.67	0.63	0.59	0.54	0.49	0.44	0.42
$y_{ m CM}$	1.139	1.254	1.375	1.522	1.683	1.867	2.021	2.102

Cumulants and Moments

Cumulants of a distribution are defined as:

• $C_1 = \langle N \rangle \equiv \mu$ • $C_2 = \langle (N - \mu)^2 \rangle \equiv \sigma^2$ • $C_3 = \langle (N - \mu)^3 \rangle$ • $C_4 = \langle (N-\mu)^4 \rangle - 3 \langle (N-\mu)^2 \rangle^2$ Some standardized moments are: • $S\sigma = C_3/C_2$ [measures asymmetry] • $\kappa \sigma^2 = C_4/C_2$ [measures "tailedness"]

Previous Results

- Non-monotonicity in Beam Energy Scan I net-proton C_4/C_2 with 3.1 σ significance
- Recent $\sqrt{s_{NN}} = 3$ GeV measurement returns to non-critical baseline
- High-statistics collider data from Beam Energy Scan II will improve measurements from $\sqrt{s_{NN}} = 7.7-27$ GeV
- Fixed-target data will fill the gap between $\sqrt{s_{NN}} = 3$ and 7.7 GeV

3. Acceptance

Overlap at $\sqrt{s_{NN}} = 7.7 \text{ GeV}$

- Data was taken at $\sqrt{s_{NN}} = 7.7$ GeV in both the collider and fixed-target configurations
- There is significant overlap in acceptance for a comparison
- Overlap analysis will validate fixed-target and collider methodologies

- Centrality determined by TPC multiplicity
- TOF relies on precision timing and often misses protons from pileup with timing offset
- TPC multiplicity includes pileup tracks
- Pileup events classified as central collisions but have few TOF-identified protons
- This causes tail on proton-number distribution, which creates false signal for high-order cumulants

References

[1] Xiaofeng Luo and Nu Xu. In: Nuclear Science and Techniques 28 (Aug. 2017). [2] M. S. Abdallah et al. In: Phys. Rev. Lett. 128 (20 2022), p. 202303. [3] M A Stephanov. In: Journ. of Phys. G: Nucl. and Part. Phys. 38.12 (2011), p. 124147.

5. Conclusions

- Fixed-Target Program extends energy range of RHIC down to $\sqrt{s_{NN}} = 3$ GeV
- Fixed-target proton fluctuations analyses are underway from $\sqrt{s_{NN}} = 3.2-7.7$ GeV
- Overlap acceptance for fixed-target and collider data at $\sqrt{s_{NN}} = 7.7$ GeV allows methodology validation
- Reliance on TOF for particle ID makes measurements sensitive to timing fluctuations, which can be managed
- Prior measurements show non-monotonic variation in C_4/C_2 as a function of $\sqrt{s_{NN}}$ at 3.1 σ significance
- Fixed-target data will add mid-rapidity C_4/C_2 measurements at $\sqrt{s_{NN}} = 3.2$ -4.5 GeV to energy scan