

24th ZIMÁNYI SCHOOL WINTER WORKSHOP **ON HEAVY ION PHYSICS**

December 2-6, 2024

Budapest, Hungary Kassák: Image architecture

József Zimányi (1931 - 2006

STAR highlights with focus on BES results

Hanna Zbroszczyk for the STAR Collaboration

e-mail: hanna.zbroszczyk@pw.edu.pl

Warsaw University of Technology

Road map

Beam Energy Scan program

http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Goals of the Beam Energy Scan Program:

Search for turn-off of QGP signatures
Search for signals of the first-order phase transition
Search for QCD critical point

Heavy-ion collision used as a tool to probe QCD phase diagram

Believed to be understood:

Lattice QCD predicts a smooth cross-over transition at large T and $\mu_R \sim 0$

Various models predict first-order phase **transition** at large μ_B

Critical point is believed to exist, but.. where?

Strategy: to map the phase diagram (μ_R ,T) using heavy-ion collisions changing their collision energy: BES-I, BES-II (+FXT)

Probing QCD Phase Diagram

- 3.83 km circumference
- Two independent rings
- Collides so far:
 - Au+Au, p+p,
 d+Au, Cu+Cu,
 U+U, Cu+Au,
 ³He+Au, p+Au
 Zr+Zr, Ru+Ru
- Top Center-of-Mass Energy
 510 GeV for
 p-p
 200 GeV/nucl.

for Au-Au

Relativistic Heavy Ion Collider

RHIC

(Carl)

Relativistic Heavy Ion Collider (RHIC) Brookhaven National Laboratory (BNL)

STAR detector system

Solenoidal Tracker At RHIC originally designed to search for Quark Gluon Plasma.

BES program started at 2010.

Luminosity of the RHIC collider-mode is unusable for $\sqrt{s_{NN}} < 7.7$ GeV.

Fixed-target (FXT) program extends the collision energy and μ_B coverage.

arXiv:2007.14005 (STAR) $\sqrt{s_{NN}}$ =4.5GeV Fixed Target

Particle identification

ZIMÁNYI SCHOOL 2024 24th ZIMÁNYI SCHOOL WINTER WORKSH ON HEAVY ION PHYS

Collider and fixed-target acceptance

Similar acceptance for all particles and energies

11

Particle spectra

Inverse slopes of the identified hadron spectra follow the order $\pi < K < p$ $\frac{dN}{m_T dm_T dy} = f(y) exp(\frac{-m_T}{T}); m_T = \sqrt{m^2 + p_T^2}$

Chemical and kinetic freeze-out parameters

Extracted from spectra: $m_T - m \text{ of } \pi, K, p$

13

Chemical and kinetic freeze-out parameters

Extracted from particle yields with THERMUS model

Extracted from spectra (from Blast Wave model): $m_T - m \text{ of } \pi, K, p$

Grand (Strangeness) Canonical ensemble. BES-I: $\mu_R \sim 20$ MeV - 420 MeV BES-II: $\mu_R \sim 205$ MeV - 720 MeV

Extracted from particle yields with THERMUS model assuming

- 1. Onset of QGP (disappearance of signals of partonic degrees of freedom) Charge separation w.r.t. EP NCQ scaling of elliptic flow
- 2. Search for signatures of first order phase transition (softening of EOS at lower collision energy) Directed flow v_1 Femtoscopy
 - 3. Existence of **Critical Point** (CP) Fluctuation analyses

Observables

Observables

- 1. Onset of QGP (disappearance of signals of partonic degrees of freedom) Charge separation w.r.t. EP NCQ scaling of elliptic flow
- 2. Search for signatures of first order phase transition (softening of EOS at lower collision energy) Directed flow v_1 Femtoscopy

 - 3. Existence of **Critical Point** (CP) Fluctuation analyses

Charge separation

- Strong **B**, system is **deconfined**, chiral symmetry restoration is reached. • Chiral symmetry breaking and the origin
- of hadrons masses related to the existence of gluons field.
- Quarks interactions with gluons fields can change quarks chirality, and may lead to Local Parity Violation.
- Chiral Magnetic Effect: separation of the charges along the **B** axis (or **L**).

Charge separation

- symmetry restoration is reached.
- Strong **B**, system is **deconfined**, chiral • Chiral symmetry breaking and the origin of hadrons masses related to the existence of gluons field.
- Quarks interactions with gluons fields can change quarks chirality, and may lead to Local Parity Violation.
- Chiral Magnetic Effect: separation of the charges along the **B** axis (or **L**).
- Au+Au, U+U and Cu+Cu at top RHIC energies show charge separation measures as $\gamma = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$

Charge separation

- Strong **B**, system is **deconfined**, chiral symmetry restoration is reached.
- Chiral symmetry breaking and the origin of hadrons masses related to the existence of gluons field.
- Quarks interactions with gluons fields can change quarks chirality, and may lead to Local Parity Violation.
- Chiral Magnetic Effect: separation of the charges along the **B** axis (or **L**).
- Au+Au, U+U and Cu+Cu at top RHIC energies show charge separation measures as $\gamma = \langle \cos(\phi_{\alpha} + \phi_{\beta} 2\Psi_{RP}) \rangle$
- Is reduction of signal with decreasing collision energy the signal of turn-off of deconfinement?

Splitting between same- and opposite-sign charges decreases with decreasing collision energy and disappears below $\sqrt{s_{NN}} = 11.5$ GeV

Elliptic flow

24th ZIMÁNYI SCHOOI WINTER WORKSF N HEAVY ION PHY

Elliptic flow

24th ZIMÁNYI SCHOOL WINTER WORKSHOI ON HEAVY ION PHYSIC

Elliptic flow

 $v_2(p_T)$ are mass ordered

 ϕ meson v_2 fails the trend from other hadrons at $\sqrt{s_{NN}} =$ 11.5 GeV, (low The NCQ scaling holds within uncertainties for these BES-I energies

STAR: PRC 88 (2013) 14902 Phys. Rev. Lett. 116, 062301 (2016)

Elliptic flow

ZIMÁNYI SCHOOL 2024

 $v_2(p_T)$ are mass ordered

 ϕ meson v_2 falls the trend from other hadrons at $\sqrt{s_{NN}}$ 11.5 GeV, (low statistics)

The NCQ scaling holds within uncertainties for these BES-I energies

- $v_2 > 0 \rightarrow$ formation of the QGP, scaling of NCQ
- $v_2 < 0$, slope of the $v_1 < 0$ ($\sqrt{s_{NN}} = 3$ GeV) \rightarrow NCQ scaling absent

STAR: PRC 88 (2013) 14902 Phys. Rev. Lett. 116, 062301 (2016)

24th ZIMÁNYI SCHOOI WINTER WORKSH **ON HEAVY ION PHY**

Elliptic flow

- $0 \rightarrow$ partonic collectivity \rightarrow formation of $QGP \rightarrow scaling$ of NCQ
- v_2 <0, slope of the \mathcal{V}_1 $(\sqrt{s_{NN}} = 3 \text{ GeV})$ \rightarrow NCQ scaling absent

- JAM, UrQMD mean field reproduced results.
- Vanishing of partonic collectivity and a new EOS, dominated by baryonic interactions in the high baryon density region.

< 0

- $v_2 > 0 \rightarrow$ formation of the QGP, scaling of NCQ
- $v_2 < 0$, slope of the $v_1 < 0$ ($\sqrt{s_{NN}} = 3$ GeV) \rightarrow NCQ scaling absent

STAR: PRC 88 (2013) 14902 Phys. Rev. C 93, 014907 (2016) Phys. Rev. Lett. 116, 062301 (2016)

- 1. Onset of QGP (disappearance of signals of partonic degrees of freedom) Charge separation w.r.t. EP NCQ scaling of elliptic flow
- 2. Search for signatures of first order phase transition (softening of EOS at lower collision energy) Directed flow v_1 Femtoscopy
 - 3. Existence of **Critical Point** (CP) Fluctuation analyses

Observables

Directed flow and $\langle m_T \rangle - m$ dependence

- v_1 probes early stage of collision;
- *v*₁ sensitive to compression;
- v_1 should be sensitive to the first-order phase transition;
- change of sign in the slope of $\frac{dv_1}{dy}$ (for baryons, or net-baryons) predicted

as a probe to the softening of EOS and/or the first-order phase transition;

If a system undergoes a first-order phase transition, due to formation of mixed phase, pressure gradient is small (minimum in the v_1 slope parameter);

STAR, PRL 112, 162301 (2014)

\bigcirc Directed flow and $< m_T > - m$ dependence

- v_1 probes early stage of collision;
- *v*₁ sensitive to compression;
- v_1 should be sensitive to the first-order phase transition;
- change of sign in the slope of $\frac{dv_1}{dy}$ (for baryons, or net-baryons) predicted

as a probe to the softening of EOS and/or the first-order phase transition;

- If a system undergoes a first-order phase transition, due to formation of mixed phase, pressure gradient is small (minimum in the v_1 slope parameter);
- $< m_T > m$ measures thermal excitation in the transverse direction

STAR, PRL 112, 162301 (2014)

ZIMÁNYI SCHOOL 2024 24th ZIMÁNYI SCHOOI WINTER WORKSHOP **ON HEAVY ION PHYSIC** PHENIX Collaboration, arXiv:1410.2559 PHENIX/STAR (b) (a) Au+Au 15 . <u>R</u>)/R_{long} STAR Au + Au $(R_{out})^2 - (R_{side})^2 (fm^2)$ \vec{R}_{side}

∳

0-5%

•

Pb + Pb

0.01 0.1

5

ALICE

0.01 0.1

 $m_{T} = 0.26 \text{ GeV/c}^{2}$

ł

1

Femtoscopy

N

(Rside

0.4

- $R_{out}^2 R_{side}^2 = \beta_t^2 \Delta \tau^2$: related to emission duration
- $(R_{\rm side} \sqrt{2}\bar{R})/R_{\rm long}$: related to
- expansion velocity, \overline{R} : initial
- transverse size
- Indication of the critical behavior?

 $\sqrt{s_{NN}}$ TeV

How to measure phase transition?

vHLEE+UrQMD model verify **sensitivity** of HBT measurements to the first-order phase transition

STAR Data 1st order Phase Transition **Cross-over Transition**

vHLLE (3+1)-D viscous hydrodynamics: Iu. Karpenko, P. Huovinen, H. Petersen, M. Bleicher; Phys.Rev. C 91, 064901 (2015), arXiv:1502.01978, 1509.3751

HadronGas + Bag Model $\rightarrow 1^{st}$ order PT ; P.F. Kolb, et al, PR C 62,054909 (2000)

Chiral EoS \rightarrow crossover PT (XPT); J. Steinheimer, et al, J. Phys. G 38, 035001 (2011)

Observables

- 1. Onset of QGP (disappearance of signals of partonic degrees of freedom) Charge separation w.r.t. EP NCQ scaling of elliptic flow
- 2. Search for signatures of first order phase transition (softening of EOS at lower collision energy) Directed flow v_1 Femtoscopy

 - 3. Existence of **Critical Point** (CP) Fluctuation analyses

Fluctuations and correlations

The higher cumulant order, the more sensitive to the correlation length

4th order: predicts a nonmonotonic energy dependence due to contribution from QCD critical point

- Near the QCD CP the divergence of the correlation length expected
- Non-monotonic correlations and fluctuations related to conserved quantities (B, Q, S) could indicate CP
- Higher moments of conserved quantities measure non-Gaussian nature of fluctuations, and are more sensitive (than e.g. variance) to CP fluctuations (leads to correlation length)

Fluctuations and correlations

The higher cumulant order, the more sensitive to the correlation length

10

Au+Au Collisions at RHIC

Net-proton, lyl < 0.5

 $0.4 < p_{_T} < 2.0 \; GeV/c$

STAR

3

- Near the QCD CP the divergence of the ₽ correlation length expected
- Non-monotonic correlations and fluctuations related to conserved quantities (B, Q, S) could indicate CP
- Higher moments of conserved quantities measure non-Gaussian nature of fluctuations, and are more sensitive (than e.g. variance) to CP fluctuations (leads to correlation length)
- Non-monotonic energy dependence of net-proton seen as deviation w.r.t to model calculations without CP.
- The suppression of C_4/C_2 consistent with fluctuations driven by baryon number conservation indicating a hadronic interaction dominated region at $\sqrt{s_{NN}} = 3 \text{ GeV}$
- The QCD critical point, (if exists in heavy ion collisions), could be located at $\sqrt{s_{NN}}$ > 3 GeV; STAR, PRL 126, 092301 (2021),

PRC 104.024902 (2021), PRL 128.202303 (2022)

Summary from BES

Continue to look for the **Critical Point** and the first-order phase transition.

- High statistics exploration of QCD phase diagram and its key features has already begun
 - More coming soon (BES-II, SPS, FAIR)
 - Turn trends and features into definite conclusions

More interesting questions appeared..

Summary from BES

Continue to look for the **Critical Point** and the first-order phase transition.

- High statistics exploration of QCD phase diagram and its key features has already begun
 - More coming soon (BES-II, SPS, FAIR)
 - Turn trends and features into definite conclusions

More interesting questions appeared..

