

24th ZIMÁNYI SCHOOL **WINTER WORKSHOP** ON HEAVY ION PHYSICS

December 2-6, 2024

Budapest, Hungary Kassák: Image architecture

József Zimányi (1931 - 2006

STAR highlights with focus on BES results

Hanna Zbroszczyk for the STAR Collaboration

Warsaw University of Technology

 e-mail: *hanna.zbroszczyk@pw.edu.pl*

Supported in part by:

Beam Energy Scan program

Goals of the Beam Energy Scan Program: 1. Search for **turn-of** of **QGP** signatures 2. Search for signals of the **first-order phase transition** 3. Search for QCD **critical point**

Probing QCD Phase Diagram

Heavy-ion collision used as a tool to probe QCD phase diagram

Lattice QCD predicts a smooth **cross-over** transition at large T and $\mu_B\thicksim 0$

Believed to be understood:

Strategy: to map the phase diagram (μ_B, T) using heavy-ion collisions changing their collision energy: BES-I, BES-II (+FXT)

Critical point is believed to exist, but.. where?

Various models predict **first-order phase transition** at large *μB*

8

ZIMÁNYI SCHOOL 2024

- 3.83 km circumference
- Two independent rings
- Collides so far:
	- \bullet Au+Au, p+p, $d+Au$, $Cu+Cu$, $U+U$, $Cu+Au$, $3He+Au$, $p+Au$ $Zr+Zr$, Ru+Ru
- Top Center-of-Mass Energy ●510 GeV for p-p ●200 GeV/nucl.

for Au-Au

Relativistic Heavy Ion Collider (**RHIC**) Brookhaven National Laboratory (**BNL**)

Relativistic Heavy Ion Collider

RHIC

SOLVE

STAR detector system

Solenoidal **T**racker **A**t **R**HIC originally designed to search for **Quark Gluon Plasma**.

Luminosity of the RHIC collider-mode is unusable for $\overline{s_{NN}}$ < 7.7 GeV.

Fixed-target (FXT) program extends the collision energy and μ_B coverage.

BES program started at 2010.

$\sqrt{s_{NN}}$ =4.5GeV Fixed Target

$\sqrt{s_{NN}}$ =14.5GeV Collider

Particle identification

Collider and fixed-target acceptance

11

Similar acceptance for all particles and energies

Inverse slopes of the identified hadron spectra follow the order $\pi <$ K $<$ p ;
; *dN* m_Tdm_Td y = *f*(*y*)*exp*($-m_T$ $\frac{m_T}{T}$); $m_T = \sqrt{m^2 + p_T^2}$ *T*

ZIMÁNYI SCHOOL 2024

Particle spectra

Chemical and kinetic freeze-out parameters

Extracted from spectra: $m_T - m$ of π , K, p

13

Chemical and kinetic freeze-out parameters

Extracted from particle yields with THERMUS model

Grand (Strangeness) Canonical ensemble. BES-I: $\mu_B \sim 20$ MeV - 420 MeV BES-II: $\mu_B \sim 205 \text{ MeV}$ - 720 MeV

Extracted from spectra (from Blast Wave model): $m_T - m$ of π , K, p

Extracted from particle yields with THERMUS model assuming

- 1. **Onset of QGP** (disappearance of signals of partonic degrees of freedom) Charge separation w.r.t. EP NCQ scaling of elliptic flow
- 2. Search for signatures of first order **phase transition** (softening of EOS at lower collision energy) Directed flow v_1 Femtoscopy
	- 3. Existence of **Critical Point** (CP) Fluctuation analyses

Observables

- 1. **Onset of QGP** (disappearance of signals of partonic degrees of freedom) Charge separation w.r.t. EP NCQ scaling of elliptic flow
- 2. Search for signatures of first order **phase transition** (softening of EOS at lower collision energy) Directed flow v_1 Femtoscopy
- - 3. Existence of **Critical Point** (CP) Fluctuation analyses

Observables

- Strong **B**, system is **deconfined**, chiral symmetry restoration is reached. • Chiral symmetry breaking and the origin
- of hadrons masses related to the existence of gluons field.
- Quarks interactions with gluons fields can change quarks chirality, and may lead to **L**ocal **P**arity **V**iolation.
- **C**hiral **M**agnetic **E**ffect: separation of the charges along the **B** axis (or **L**).

Charge separation

L or B PRL 103 (2009) 251601 \times 10⁻³ $(cos(\phi + \phi - 2T_{\text{m}}))$
 0.2
 -0.2 Au+Au 200 GeV $\textcolor{red}{\textbf{+}}$ STAR \diamond Hijing \triangle HIJING + v_{2} \circ UrQMD **DIMEVSIM CO----------------**-0.2 -0.4 **Red:** same charge **Blue: opp charge** -0.6 70 60 50 20 30 10 40 % Most central

- symmetry restoration is reached.
- Strong **B**, system is **deconfined**, chiral • Chiral symmetry breaking and the origin of hadrons masses related to the existence of gluons field.
- Quarks interactions with gluons fields can change quarks chirality, and may lead to **L**ocal **P**arity **V**iolation.
- **C**hiral **M**agnetic **E**ffect: separation of the charges along the **B** axis (or **L**).
- Au+Au, U+U and Cu+Cu at top RHIC energies show charge separation measures as $\gamma = \langle \cos(\phi_\alpha + \phi_\beta - 2\Psi_{RP}) \rangle$

Charge separation

L or B PRL 103 (2009) 251601 \times 10 $^{-3}$ $\langle \cos(\phi + \phi - 2\Psi_{\text{B}}) \rangle$
 \sim 0.2
 \rightarrow 0.2 Au+Au 200 GeV \blacktriangleright STAR \Diamond Hijing \triangle HIJING + $v₂$ \circ UrQMD **MEVSIM** -0.2 -0.4 **Red: same charge Blue: opp charge** -0.6 70 60 50 20 10 40 30 % Most central

- Strong **B**, system is **deconfined**, chiral symmetry restoration is reached.
- Chiral symmetry breaking and the origin of hadrons masses related to the existence of gluons field.
- Quarks interactions with gluons fields can change quarks chirality, and may lead to **L**ocal **P**arity **V**iolation.
- **C**hiral **M**agnetic **E**ffect: separation of the charges along the **B** axis (or **L**).
- Au+Au, U+U and Cu+Cu at top RHIC energies show charge separation measures as $\gamma = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$
- Is reduction of signal with decreasing collision energy the signal of turn-off of deconfinement?

Splitting between same- and opposite-sign charges decreases with decreasing collision energy and disappears below $\sqrt{s_{NN}} = 11.5$ GeV $_{20}$

Charge separation

24th ZIMÁNYI SCHOOI **N HEAVY ION PH**

Elliptic flow

24th ZIMÁNYI SCHOOL **WINTER WORKSHOP** ON HEAVY ION PHYSIC

Elliptic flow

STAR: PRC 88 (2013) 14902 Phys. Rev. Lett. 116, 062301 (2016)

 $v_2(p_T)$ are mass ordered

• ϕ meson v_2 fails the trend from other hadrons at $\sqrt{s_{NN}}$ = 1 1 . 5 G e V, (l o w The NCQ scaling holds within uncertainties for these BES-I energies

Elliptic flow

STAR: PRC 88 (2013) 14902 Phys. Rev. Lett. 116, 062301 (2016)

• ϕ meson v_2 falls the trend from other hadrons at $\sqrt{s_{NN}}$ = 1 1 . 5 G e V, (l o w

ZIMÁNYI SCHOOL 2024

24th ZIMÁNYI SCHOO!

 $v_2(p_T)$ are mass ordered

The NCQ scaling holds within uncertainties for these BES-I energies

- $v_2 > 0 \rightarrow$ formation of the QGP, scaling of NCQ
- $v_2 < 0$, slope of the $v_1 < 0 \ (\sqrt{s_{NN}} = 3 \text{ GeV})$ \rightarrow NCQ scaling absent

24th ZIMÁNYI SCHOOI **WINTER WORKSH ON HEAVY ION PHY**

Elliptic flow

- v_2 > 0 \rightarrow p a r t o n i c collectivity → formation of $QGP \rightarrow scaling$ of NCQ
- v_2 <0, slope of the v_1 < 0 $\left(\sqrt{s_{NN}}=3 \text{ GeV}\right)$ \rightarrow NCQ scaling absent v_1

STAR: PRC 88 (2013) 14902 Phys. Rev. C 93, 014907 (2016) Phys. Rev. Lett. 116, 062301 (2016)

- JAM, UrQMD mean field reproduced results.
- Vanishing of partonic collectivity and a new EOS, dominated by baryonic interactions in the high baryon density region.

- $v_2 > 0 \rightarrow$ formation of the QGP, scaling of NCQ
- $v_2 < 0$, slope of the $v_1 < 0 \ (\sqrt{s_{NN}} = 3 \text{ GeV})$ \rightarrow NCQ scaling absent

- 1. **Onset of QGP** (disappearance of signals of partonic degrees of freedom) Charge separation w.r.t. EP NCQ scaling of elliptic flow
- 2. Search for signatures of first order **phase transition** (softening of EOS at lower collision energy) Directed flow v_1 Femtoscopy
	- 3. Existence of **Critical Point** (CP) Fluctuation analyses

Observables

Directed flow and $\langle m_T \rangle - m$ dependence

If a system undergoes a first-order phase transition, due to formation of mixed phase, pressure gradient is small (minimum in the v_1 slope parameter); mixed phase, pressure gradient is small (minimum in the v_1 slope parameter);

- v_1 probes early stage of collision;
- v_1 sensitive to compression;
- v_1 should be sensitive to the first-order phase transition;
- change of sign in the slope of $\frac{1}{dy}$ (for baryons, or net-baryons) predicted dv_1 *dy*

as a probe to the softening of EOS and/or the first-order phase transition;

STAR, PRL 112, 162301 (2014)

Directed flow and $\langle m_T \rangle - m$ dependence

as a probe to the softening of EOS and/or the first-order phase transition;

- If a system undergoes a first-order phase transition, due to formation of mixed phase, pressure gradient is small (minimum in the v_1 slope parameter); mixed phase, pressure gradient is small (minimum in the v_1 slope parameter);
- $\langle m_T \rangle m$ measures thermal excitation in the transverse direction

- v_1 probes early stage of collision;
- v_1 sensitive to compression;
- v_1 should be sensitive to the first-order phase transition;
- change of sign in the slope of $\frac{1}{dy}$ (for baryons, or net-baryons) predicted dv_1 *dy*

STAR, PRL 112, 162301 (2014)

ZIMÁNYI SCHOOL 2024 24th ZIMÁNYI SCHOOL **WINTER WORKSHOP** ON HEAVY ION PHYSIC

Femtoscopy

PHENIX Collaboration, arXiv:1410.2559

- $R_{out}^2 R_{side}^2 = \beta_t^2 \Delta \tau^2$: related to emission duration
- $(R_{\text{side}} \sqrt{2} \bar{R})/R_{\text{long}}$: related to
- expansion velocity, \bar{R} : initial
- transverse size
- Indication of the critical

-
-

STAR Data 1st order Phase Transition Cross-over Transition

How to measure phase transition?

vHLEE+UrQMD model verify **sensitivity of HBT measurements to the first-order phase tran**sition

 $v H L L E$ $(3 + 1) - D$ viscous hydrodynamics: Iu. Karpenko, P. Huovinen, H. Petersen, M. Bleicher; Phys.Rev. C 91, 064901 (2015), arXiv:1502.01978, 1509.3751

 $HadronGas + Bag Model \rightarrow 1st$ order PT ; P.F. Kolb, et al, PR C 62, 054909 (2000)

Chiral EoS → crossover PT (XPT); J. Steinheimer, et al, J. Phys. G 38, 035001 (2011)

- 1. **Onset of QGP** (disappearance of signals of partonic degrees of freedom) Charge separation w.r.t. EP NCQ scaling of elliptic flow
- 2. Search for signatures of first order **phase transition** (softening of EOS at lower collision energy) Directed flow v_1 Femtoscopy
	-
	- 3. Existence of **Critical Point** (CP) Fluctuation analyses

Observables

Fluctuations and correlations

4th order: predicts a nonm o n o t o n i c e n e r g y dependence due to contribution from QCD critical point

- Near the QCD CP the divergence of the correlation length expected
- Non-monotonic correlations and fluctuations related to conserved quantities (B, Q, S) could indicate CP
- Higher moments of conserved quantities measure non-Gaussian nature of fluctuations, and are more sensitive (than e.g. variance) to CP fluctuations (leads to correlation length)

The higher cumulant order, the more sensitive to the correlation length

Fluctuations and correlations

: predicts a non-*C*4/*C*² m o n o t o n i c e n e r g y dependence due to contribution from QCD critical point

Au+Au Collisions at RHIC

Net-proton, $|y| < 0.5$

 $0.4 < p_{T} < 2.0$ GeV/c

STAR

PRC 104.024902 (2021), PRL 128.202303 (2022)

The higher cumulant order, the more sensitive to the correlation length

-
-
-
-
- Near the QCD CP the divergence of the correlation length expected
- Non-monotonic correlations and fluctuations related to conserved quantities (B, Q, S) could indicate CP
- Higher moments of conserved quantities measure non-Gaussian nature of fluctuations, and are more sensitive (than e.g. variance) to CP fluctuations (leads to correlation length)
- seen as deviation w.r.t to model calculations without CP.
- The suppression of C4/C2 consistent with fluctuations driven by baryon number conservation indicating a hadronic interaction dominated region at $\sqrt{s_{NN}} = 3$ GeV
- The QCD critical point, (if exists in heavy ion collisions), could be located at $\sqrt{s_{NN}}$ > 3 GeV; STAR, PRL 126, 092301 (2021),

Summary from BES

Continue to look for the **Critical Point** and the **first-order phase transition**.

- **High statistics exploration of QCD phase diagram and its key features has already begun**
	- More coming soon (BES-II, SPS, FAIR)
	- **Turn trends and features into definite conclusions**

More interesting questions appeared..

Summary from BES

Continue to look for the **Critical Point** and the **first-order phase transition**.

- **High statistics exploration of QCD phase diagram and its key features has already begun**
	- More coming soon (BES-II, SPS, FAIR)
	- **Turn trends and features into definite conclusions**

