

Warsaw University of Technology

Two-particle correlation at the BES program at STAR

Introduction

- HIC and HBT method
- Correlation femtoscopy
- RHIC / STAR / BES;

Results

- Identical pions
- Other systems
- SI studies

Summary

Hanna Zbroszczyk for the STAR Collaboration

e-mail: hanna.zbroszczyk@pw.edu.pl

Supported in part by

ENERGY N NATIONAL SCIENCE CENTRE

Zymanyi School Winter Workshop, December 6-10 2021, Budapest, Hungary

Introduction

Heavy-Ion collision and HBT method

Lisa MA, et al. 2005. Annu. Rev. Nucl. Part. Sci. 55:357–402

Homogeneity region

Correlation femtoscopy

Size: ~10⁻¹⁵ m (**fm**) Time: ~10⁻²³ s

Impossible to measure directly!

Femtoscopy (HIC) inspired by Hanbury Brown and Twiss interferometry method (Astronomy)

but!

- different scales,
- different measured quantities
- different determined quantities

Hanbury Brown, R.; Twiss, Nature 178, 1046–1048 (1956)

Two-particle correlations

 x_1, x_2 - space-time sizes (and dynamics) (can not be measured directly) \rightarrow Close velocity correlations (HBT + FSI)

 p_1,p_2 - momenta and momentum difference (${\bf can}$ be measured directly)

Single- and two-particle distributions:

$$P_1(p) = E\frac{dN}{d^3p} = \int d^4x S(x,p)$$

$$P_2(p_1, p_2) = E_1 E_2 \frac{dN}{d^3 p_1 d^3 p_2}$$

$$P_2(p_1, p_2) = \int d^4 x_1 S(x_1, p_1) d^4 x_2 S(x_2, p_2) \Phi(x_2, p_2 | x_1, p_1)$$

The correlation function:

$$C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)}$$

Relativistic Heavy Ion Collider (**RHIC**) Brookhaven National Laboratory (**BNL**), Upton

Particle identification based on dE/dx and time-of-flight

Beam Energy Scan Program

RHIC **Top Energy** p+p, p+Al, p+Au, d+Au, ³He+Au, Cu+Cu, Cu+Au, Ru+Ru, Zr+Zr, Au+Au, U+U QCD at high energy density/temperature Properties of QGP, EoS

Beam Energy Scan Au+Au at $\sqrt{s_{NN}} = 7.7$ -62 GeV

- QCD phase transition
- Search for critical point
- Turn-off of QGP signatures
- Chiral symmetry restoration

Fixed-Target Program Au+Au at $\sqrt{s_{NN}} = 3.0-7.7$ GeV High baryon density regime with $\mu_B = 420-720$ MeV

Results

Identical pion femtoscopy

$$\varepsilon_{PP} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_x^2 + \sigma_y^2}, \qquad \varepsilon_F = \frac{\sigma_y'^2 - \sigma_x'^2}{\sigma_y'^2 + \sigma_x'^2} \approx 2\frac{R_{s,2}^2}{R_{s,0}^2}$$
$$\sigma_x^2 = \{x^2\} - \{x\}^2 \text{ and } \sigma_y^2 = \{y^2\} - \{y\}^2$$
$$R_{\mu}^2(\Phi) = R_{\mu,0}^2$$
$$+ 2\sum_{n=2,4,6\dots} R_{\mu,n}^2 \cos(n\Phi) \qquad (\mu = o, s, l, ol)$$

$$R_{\mu}^{2}(\Phi) = R_{\mu,0}^{2} + 2 \sum_{n=2,4,6...} R_{\mu,n}^{2} \sin(n\Phi) \qquad (\mu = os)$$

System evolves faster in the reaction plane

How to measure a phase transition?

Clear evolution in the freeze-out shape indicated

Lower energies: system more oblate ($R_{side} > R_{long}$) Higher energies: system more prolate ($R_{side} < R_{long}$) $\sqrt{s_{NN}}$ = 4.5 GeV: round system ($R_{side} \simeq R_{long}$)

Transition region between dynamics dominated by stopping and boost-invariant dynamics.

How to measure a phase transition?

14

How to measure a phase transition?

Other systems: energy dependence

Non-identical particle correlations - introduction

Source dynamics: centrality and energy dependencies

Source dynamics: system dependence

Like-sign 0-10% @ Au+Au 39 GeV Unlike-sign 0-10% @ Au+Au 39 GeV

 $\beta_{\!f}$ - the same for both particles $\beta_t \sim 1/m_T \text{ - smaller for heavier particles}$

Strong interactions between anti-nucleons

f₀ and d₀ - parameters of strong interaction

Scattering length f_0 Effective range d_0 Elastic cross section σ_e

$$\lim_{k \to 0} \sigma_e = 4\pi f_0^2$$

- f₀ and d₀ for the antiproton-antiproton interaction consistent with parameters for the proton-proton interaction.
- Descriptions of the interaction among antimatter (based on the simplest systems of anti-nucleons) determined.
- A quantitative verification of matter-antimatter symmetry in context of the forces responsible for the binding of (anti)nuclei.

Strange Baryon Correlations (including p- Ω)

Binding energy **Ebin** [MeV] Scattering length **ao** [fm]

Effective range reff [fm]

for 3 scenarios:

K. Morita et al. Phys. Rev. C 94, 031901 (2016)

	V1	V2	V3
Ebin [MeV]	-	6.3	26.9
a0 [MeV]	-1.12	5.79	1.29
r _{eff} [MeV]	-1.16	0.96	0.65

A comparison of the measured correlation functions from Au+Au collisions with theoretical predictions

Scattering length is positive and favor $p\Omega$ bound state hypothesis

Phys.Lett.B 790 (2019) 490

Reconstruction of Λ and Ξ

	Decay channel	Mass (from PDG 2018)
$rac{\Lambda}{\overline{\Lambda}}$ (uds)	$\begin{array}{l} \Lambda => \pi^{-} + p \\ \overline{\Lambda} => \pi^{+} + \overline{p} \\ \text{(63.9\%)} \end{array}$	1.115683 (GeV/c ²)
Ξ (dss) Ξ	$\begin{split} \Xi & \longrightarrow \Lambda + \pi^+ \\ \overline{\Xi} & \longrightarrow \overline{\Lambda} + \pi^- \\ (99.87\%) \end{split}$	1.32171 (GeV/c ²)

- KFParticle package was used.
 KFParticle is based on Kalman filter.
- > Very good Purity for Λ (~88%) and Ξ (~90%).

Daughter particle selection for Λ and Ξ

Studies of strong interactions

Strong and Coulomb

Final State Interactions.

 $C(k^*)$ ratio of small to large systems,

$$C_{SL}(k^*) = \frac{C(k^*)_{40-80\%}}{C(k^*)_{0-40\%}}$$

 $C_{SL}(k^*)$ is more sensitive to strong interaction with largely canceled Coulomb interaction[1].

- Below k* = 0.1 GeV/c, the signal is enhanced beyond the Coulomb interaction and background.
- ➤ Similar to lattice QCD calculation [2] which suggests an attractive strong interaction between p and Ξ⁻.

Search for bound states?

Hyperon-Hyperon (Y-Y) and Hyperon-Nucleon (Y-N) interactions: important to study exotic hadronic states (e.g. H-dibaryon) and to understand the EoS of neutron stars.

Do bound state of Y-N and Y-Y (S=-2) exist ?

New high statistics data ~4 times larger than before

Not corrected for feed-down.

Anti-correlation seen

Possible to determine possible bound state

First measurement of Ξ - Ξ correlation in Au+Au collisions.

Lattice QCD/chiral EFT calculations indicate an attractive interaction, but not strong enough to form a bound state [1,2].

The result shows anti-correlation at $2k^* < 0.25$ GeV/c.

Combination of quantum statistics, strong interaction, and Coulomb interaction.

[1] J. Haidenbauer et al., Eur. Phys.J. A 51: 17 (2015)

[2] T,Doi et al., EPJ Web Conf. 175 (2018) 05009 Feed-down and Coulomb effects need to be evaluated for further discussion.

More events will be taken in 2023 and 2025

Summary

Summary

- Femtoscopic source parameters determined for a wide range of collisions energy;
- Non-monotonic behavior of $R(\sqrt{s_{NN}})$ seen in three directions;
- New data for $\sqrt{s_{NN}}$ = 4.5 GeV follow trend observed for low collision energies;
- Data for $\sqrt{s_{NN}} = 7.7$ GeV and higher collision energies indicated that the system evolves faster in the reaction plane;
- System created for $\sqrt{s_{NN}}$ = 4.5 GeV is round-shaped ($R_{side} \simeq R_{long}$);
- Visible peaks in around $\sqrt{s_{NN}} \simeq 20$ GeV at R_{out}/R_{side} and $R_{out}^2 R_{side}^2$ consistent with prediction of QGP transition threshold;
- vHLEE + UrQMD verifies sensitivity of HBT measurements to changes in EOS;
- A clear energy dependence of source sizes for particles combinations other than pions;
- A clear signal of emission asymmetry between nonidentical particle combinations;
- Heavier particles directed towards the edge of the source or freeze-out earlier.

Studies of strong interactions possible

Thank you for Your attention 27

Backup slides