Warsaw University of Technology

Baryon-baryon correlations at the STAR experiment

Hanna Zbroszczyk for the STAR Collaboration

Faculty of Physics, Warsaw University of Technology

Workshop on Particle Correlations and Femtoscopy, Kraków, 22nd May 2018

I) Introduction

- RHIC, STAR, femtoscopy
- Results from lower energy domain
- II) Baryon-baryon correlations in STAR (heavy-ion collisions)
 - (anti)proton femtoscopy: @ 200 GeV, BES
 - strange baryon femtoscopy: p- Λ , Λ - Λ
- III) Conclusions and summary

Introduction

Relativistic Heavy Ion Collider (RHIC) Brookhaven National Laboratory (BNL), New York

2 concentric rings of 1740 superconducting magnets
3.8 km circumference

The Solenoidal Tracker At RHIC

Few Words About Femtoscopy

Single- and two- particle distributions

$$P_{1}(p) = E \frac{dN}{d^{3}p} = \int d^{4}x S(x, p)$$

$$S(x,p) - \text{emission function: the distribution of source density probability of finding particle with x and p$$

$$P_{2}(p_{1}, p_{2}) = E_{1}E_{2}\frac{dN}{d^{3}p_{1}d^{3}p_{2}} = \int d^{4}x_{1}S(x_{1}, p_{1})d^{4}x_{2}S(x_{2}, p_{2})\Phi(x_{2}, p_{2}|x_{1}, p_{1})$$

$$P_{2}(p_{1}, p_{2}) = E_{1}E_{2}\frac{dN}{d^{3}p_{1}d^{3}p_{2}} = \int d^{4}x_{1}S(x_{1}, p_{1})d^{4}x_{2}S(x_{2}, p_{2})\Phi(x_{2}, p_{2}|x_{1}, p_{1})$$

$$P_{2}(p_{1}, p_{2}) = \frac{P_{2}(p_{1}, p_{2})}{P_{1}(p_{1})P_{1}(p_{2})}$$

p₂

6

Results

Results of p-p Correlations From Lower Energies

SIS \rightarrow AGS/SPS \rightarrow RHIC

Proton-proton correlations have been measured for many years

R. Kotte, et al. (FOPI collaboration) Eur.J.Phys.A23: 271-278,2005

Particle Identification in STAR

- \rightarrow TPC and TOF for the particle identification.
- → Cuts lead to very high efficiency (over 99%)

Proton Femtoscopy @200 GeV

So far, the knowledge on nuclear force was derived from studies made on **nucleon or / and nuclei**.

Nuclear force between **antinucleons** is studied for the first time.

The knowledge of interaction between two anti-protons is **fundamental** to understand the properties of more sophisticated antinuclei.

Proton Femtoscopy @200 GeV

Fit results: p-p CF, R=2.75±0.01fm; χ^2 /NDF = 1.66; antiproton-antiproton CF, $R=2.80\pm0.02$ fm , $f_0=7.41\pm0.19$ fm, $d_0=2.14\pm0.27$ fm; χ2/NDF=1.61 (щ) 2.6 2.5 1.71 2.4 1.705 2.3 1.7 2.2 1.69 2.1 1.69 2 1.68 1.9 1.68 1.8 1.67 1.7

 χ^2 /NDF(f₀,d₀) map of the results ^{f0(fm)} between measured function and fitted one to find the best valeus of f₀, d₀ parameters ¹²

7.4

7.5

7.6

7.3

1.6

7.2

1.67

7.7

Proton Femtoscopy @200 GeV - Parameters: f_0 and d_0

The scattering length f₀: determines low-energy scattering.

The elastic cross section, σ_e , (at low energies) determined solely by the scattering length, $\lim_{k \to 0} \sigma_e = 4\pi f_0^2$

- f₀ and d₀ two important parameters of strong interaction between two particles.
- Theoretical correlation function depends on: source size, k^* , f_0 and d_0 .

Proton Femtoscopy @200 GeV - Parameters: f_0 and d_0

- f₀ and d₀ for the antiproton-antiproton interaction consistent with parameters for the proton-proton interaction.
- Descriptions of the interaction among antimatter (based on the simplest systems of anti-nucleons) determined.
- A quantitative verification of matterantimatter symmetry in context of the forces responsible for the binding of (anti)nuclei.

Proton Femtoscopy in BES – Centrality Dependence

centrality	$R_{inv}p-p$ [fm]	$R_{inv}\overline{p}-\overline{p}$ [fm]	$R_{inv} p - \overline{p}$ [fm]	No significant difference
0-10%	4 . 00 \pm 0.15 \pm 0.02	3 . 83 \pm 0.20 \pm 0.03	3 . 39 \pm 0.12 \pm 0.14	between proton-proton
10-30%	3 . 61 \pm 0.13 \pm 0.17	3 . 68 \pm 0.15 \pm 0.11	2 . 69 \pm 0.10 \pm 0.12	correlation functions
30-70%	$2.72 \pm 0.07 \pm 0.07$	2 . 95 \pm 0.11 \pm 0.08	2 . 56 \pm 0.09 \pm 0.12	

Proton Femtoscopy in BES – System Dependence

proton-proton @39 GeV

proton-antiproton @39 GeV

Proton Femtoscopy in BES – System Dependence

Proton Femtoscopy in BES

Proton Femtoscopy in BES

Proton Femtoscopy in BES

Strange Baryon Correlations (Including Λ Hyperons)

Conclusions & Summary

Summary from results of baryon-baryon from $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Result of baryon-baryon correlation function from heavy-ion collisions shown
- Direct information on interaction between two anti-protons fundamental to understand the structure and properties of more complex antinuclei

Parameters of antiproton-antiproton interations: f₀, d₀ extracted

The interaction between two antiprotons found as attractive

Summary from results of baryon-baryon at BES

- Clear centrality dependence of source size at BES energies
- Visible energy dependence of source size at BES energies
- No visible difference between proton-proton and antiproton-antiproton correlation functions at $\sqrt{s_{_{NN}}}$ = 200 GeV
- Correlation functions contaminated by residual correlations residual correction required

Thank you!

Correlation Function

$$CF(k^{*}) = \frac{\sum_{pair} \delta(k_{pair}^{*} - k^{*})w(k^{*}, r^{*})}{\sum_{pair} \delta(k_{pair}^{*} - k^{*})}$$
$$w(k^{*}, r^{*}) = |\psi_{-k^{*}}^{S(+)}(r^{*}) + (-1)^{S}\psi_{k^{*}}^{S(+)}(r^{*})|^{2}/2$$
$$\psi_{-k^{*}}^{S(+)}(r^{*}) = e^{i\delta_{c}}\sqrt{A_{c}(\eta)}[e^{-ik^{*}r^{*}}F(-i\eta, 1, i\xi) + f_{c}(k^{*})\frac{\widetilde{G}(\rho, \eta)}{r^{*}}]$$
$$f_{c}(k^{*}) = [\frac{1}{f_{0}} + \frac{1}{2}d_{0}k^{*2} - \frac{2}{a_{c}}h(k^{*}a_{c}) - ik^{*}A_{c}(k^{*})]^{-1}$$

is the s-wave scattering amplitude renormalized by Coulomb interaction.

$$A_C(k^*) = (2\pi/k^*a_c) \frac{1}{exp(2\pi/k^*a_c)-1}, \ h(x) = \frac{1}{x^2} \sum_{n=1}^{\infty} \frac{1}{n(n^2 + x^{-2})} - C + \ln|x|,$$

and $\widetilde{G}(\rho, \eta) = \sqrt{A_c(k^*)} (G_0(\rho, \eta) + iF_0(\rho, \eta))$ is a combination of regular (F_0)
and singular (G_0) s-wave Coulomb functions.