

Beam Energy Dependence of Directed Flow of Pions and Kaons in Au+Au Collisions from STAR

Ze Qiu (zeqiu@mails.ccnu.edu.cn)

Central China Normal University, for the STAR Collaboration

Abstract

The v_1 is sensitive to the equation of state of nuclear matter, making it a useful probe for studying the phase transition. Results from RHIC Beam Energy Scan-I (BES-I) program on directed flow show that the proton and net-proton slope parameter $\frac{dv_1}{dy}|_{y=0}$ exhibits a minimum between 11.5 and 19.6 GeV. The observed minimum for protons and net protons resembles the predicted "soft point collapse" of flow and is a posssible signature of a first-order phase transition between hadronic matter and a deconfined phase.

In this poster, we will present measurements of the directed flow of π^+ , π^- in Au+Au collisions at $\sqrt{S_{NN}} = 9.2, 11.5, 14.6, 17.3, 19.6 \text{ GeV}$ and K⁺, K⁻ in Au+Au collisions at $\sqrt{S_{NN}} = 7.7, 9.2, 11.5, 14.6, 17.3, 19.6 \text{ GeV}$ from the RHIC Beam Energy Scan-II (BES-II) program. The rapidity dependence of v₁, as well as the energy dependence of the v₁ slope, will be discussed.

Experimental setup

- 2π azimuthal coverage
- Large acceptance
- Excellent PID
- Larger event plane resolution
 Acceptance at 2.1< |η|<5.1
- Acceptance at 2.1

EPD

The TPC and TOF are used for particle identification; EPD is used for event plane reconstruction;

Full event plane resolution (1st order)

U.S. DEPARTMENT OF

Resolution as a function of centrality across various collision energies.

EPD provides larger event plane resolution.

 $R_{1,sub} = \sqrt{\langle \cos(\psi_1^{east} - \psi_1^{west}) \rangle}$ $R_{1,full} = R(\sqrt{2}\chi_{sub})$

Particle Identification

Combination of TPC and TOF provide excellent particle identification capability.

Office of

Science

V₁ as function of rapidity

Energy Dependence of dv_1/dy

Rapidity

As the energy increases, the v_1 slope of π^+ and π^- gradually converge.

Summary

- v₁ measurements of Pions in Au+Au collisions at 9.2-19.6 GeV and Kaons in Au+Au collisions at 7.7-19.6 GeV.
- The v₁ of π⁺ is slightly higher than v₁ of π⁻. As the energy increases, the v₁ slope of π⁺ and π⁻ gradually converge.

The STAR Collaboration

