
Using constraint programming to resolve the
multi-source/multi-site data movement paradigm on the

Grid

Michal Zerola for the STAR collaboration
Jérôme Lauret, Roman Barták and Michal Šumbera

michal.zerola@ujf.cas.cz

NPI, AS CR

ACAT 2008, November 4, 2008

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 1 / 20

Outline of the problem

Challenges

How to tranfer a set of files for a physicist to his site in a shortest time possible
for fast analysis turn around?

How to achieve controlled planning of data-movement between sites on a grid
(not necessarily following Tier architecture)?

Ultimately: How to couple SE and CE aspects for distributing data on the grid
for further processing?

We concentrate on the first (most practical and of immediate need)
question. On the grid:

files are often replicated - available at multiple sites

links diverse in bandwidth or QoS

?

Destination

File A origin

File B origin

We will present a Constraint Programming approach for solving this
problem.

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 2 / 20

Introduction to Constraint Programming

A Constraint Satisfaction Problem (CSP) consists of:

a set of variables X = {x1, ..., xn},

for each variable xi , a finite set Di of possible values (its domain),

and a set of constraints restricting the values that the variables can
simultaneously take.

A solution to a CSP is an assignment of a value from its domain to every
variable, in such a way that every constraint is satisfied. We may want to
find:

any solution

all solutions

an optimal solution (defined by some objective function)

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 3 / 20

Example - Sudoku

logic-based number-placement puzzle

the objective is to fill a 9× 9 grid so that each column, each row, and
each of the nine 3 × 3 boxes contains the digits from 1 to 9 only one

time each

How to model Sudoku as a CSP?

variable with a domain equal to {1, . . . , 9} for each single cell

constraint of inequality between all pairs of variables in each row,
column, or 3 × 3 cell

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 4 / 20

From Toy problem to the real life

Notation:

NE

OUT(n)

IN(n)

dest D- set of demands

orig(d)

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 5 / 20

From Toy problem to the real life

Notation:

NE

OUT(n)

IN(n)

dest D- set of demands

orig(d)

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 6 / 20

From Toy problem to the real life

Notation:

NE

OUT(n)

IN(n)

dest D- set of demands

orig(d)

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 7 / 20

From Toy problem to the real life

Notation:

NE

OUT(n)

IN(n)

dest D- set of demands

orig(d)

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 8 / 20

From Toy problem to the real life

Notation:

NE

OUT(n)

IN(n)

dest D- set of demands

orig(d)

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 9 / 20

From Toy problem to the real life

Notation:

NE

OUT(n)

IN(n)

dest D- set of demands

orig(d)

Variables:

Decision variable Xde =

{

1, d is routed over e

0, d is not routed over e

Integer variable startde - start time of transfer d over e

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 10 / 20

Modeling constraints

Objective function - minimizing makespan (latest finish time):

min
Xde ,startde

max
e∈E

„

startde +
size(d)

speed(e)

«

| {z }

endde

·Xde

Extraction of constraints:

for each file data transfer must start from exactly one of its origins
orig(d)

∀d ∈ D :
X

e∈∪OUT(n|n∈orig(d))

Xde = 1,
X

e∈∪IN(n|n∈orig(d))

Xde = 0

if the file is transferred trough a given site, it must enter and leave site exactly once

n

∀d ∈ D, ∀n /∈ {orig(d) ∪ dest(d)} :
X

e∈OUT(n)

Xde ≤ 1,
X

e∈IN(n)

Xde ≤ 1,
X

e∈OUT(n)

Xde =
X

e∈IN(n)

Xde

· · · and many others

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 11 / 20

Solution finding principle

The solving is composed of tree search-like iterations over two stages:

1 choose a path for each demand from its origins to the destination
(assigning X variables)

Destination

2 for each link schedule all transfers, as on disjunctive resource
(assigning start variables)

Complexity

The second stage corresponds to job-shop scheduling
that belongs to the NP − hard class of problems.

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 12 / 20

Pruning the search space

We cannot escape exponential time growth but we can
do the best to shift it, so our input instances will be
solved fast.

How to achieve it?

symmetry breaking - don’t explore configurations that are symmetrical (e.g. require ordering of the

files from the same origin)

branch cutting- don’t explore transfer paths that cannot lead to the better schedule than we already have

(too many file transfers per some link can make a lower bound estimate of the makespan)

heuristic can lead to a fast (not necessarily optimum) solution, but “good enough”

. . . and other techniques, open for research

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 13 / 20

Additional real life constraints

sites have a limited storage space

easily modeled by cumulative constraint for each resource at a site
Free space

startd,inLink endd,outLink

size(d)× channelingV ariable

several {in,out}coming links can have a shared bandwidth

easily modeled by cumulative constraint for each resource at a shared link

fair share in a multiuser environment

scheduling by chunks, fair share corresponds to the selecting approach from

waited demands

network characteristic is not static but fluctuates in time

scheduling by chunks, sensors

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 14 / 20

Scheduling by chunks

We can split scheduling of the whole file set into parts (chunks) and create
an optimal schedule for each part separately, while propagating previous
results.

F1

F1

F2

F2

Fake (fixed) tasksNext chunk

Time Time

Link1

Link2

Link3

Link4

Link1

Link2

Link3

Link4

Input files:
Chunk 1 Chunk 2 Chunk n

Benefits:

speed

self adaptation to the network

fair-share (responsiveness)

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 15 / 20

Implementation

We choosed Java library for implementation of the scheduler. The main
heart of the solver is inside an open-source Choco library designed for
CSP and CP.

http://sourceforge.net/projects/choco/

we implemented a simulator scheduling file transfers generated by
feeders

feeder generates file distribution with file origins:

distinct (file is available only on 1 site)

weighted (realistic probability function)

shared (file is available on each site)

performance is compared to the Peer-2-Peer system

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 16 / 20

Results (1)

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Files

Time to produce a schedule (weighted)

CSP OPT
P2P

CSP symmetries
CSP timelimit

CSP OPT chunk 1
CSP OPT chunk 6

CSP OPT chunk 11
CSP OPT chunk 16

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 17 / 20

Results (2)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

Lo
ss

 (
%

)

Files

Makespan loss on optimum (weighted)

P2P
CSP symmetries

CSP timelimit
OPT CSP chunk 1
OPT CSP chunk 6

OPT CSP chunk 11
OPT CSP chunk 16

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 18 / 20

Effect of the capacity constraint

Site0 Site1 Site2

Site4

Link0 Link2

Link3

Link1

Site3

orig(File0) = {Site0, Site3}

orig(File1) = {Site3}

orig(File2) = {Site0, Site3}

orig(File3) = {Site0}

orig(File4) = {Site0}

slowdown(Link0) = 2

slowdown(Link1) = 2

slowdown(Link2) = 2

slowdown(Link3) = 1

Free space

for 1

additional

file

Gantt charts:

 0

 1

 2

 3

 0 1 2 3 4 5

Li
nk

Time (units)

Schedule (without capacity constraint)

File_0
File_1
File_2
File_3
File_4

 0

 1

 2

 3

 0 1 2 3 4 5 6

Li
nk

Time (units)

Schedule (with capacity constraint)

File_0
File_1
File_2
File_3
File_4

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 19 / 20

Conclusions and future work

Constraint programming seem most suitable as:

it allows to express in human terms real life problems

it has a declarative character that allows easier further extensions

Further work would need to include:

Enhancements for the 2nd stage scheduling phase implementing
algorithms from the job-shop problem field

Testing several heuristics

Move from simulation to the real life environment

Our first tests show promising results for single destination (site)
data-movements.

Out-performs p2p

Performs well with planning-by-pieces (chunks)

Hence, scales to large number of files

Michal Zerola (STAR) Using CP for data movement on the Grid November 4, 2008 20 / 20

