Low- $p_T \mu^+ \mu^-$ pair production in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} = 200$ GeV at STAR

Zhen Liu (for the STAR Collaboration) University of Science and Technology of China Brookhaven National Laboratory

Abstract

In high energy heavy-ion collisions, the strong electromagnetic (EM) fields of the nuclei can produce energetic, high-density photon fluxes, leading to photoninduced interactions. Recently, significant enhancements of e^+e^- pair and J/ψ production at very low transverse momentum (p_T) were observed by the STAR [1, 2] and ALICE [3] collaborations in peripheral hadronic A+A collisions. The excess yields exhibit a much weaker centrality dependence compared to the expectation for hadronic production, and are consistent with coherent photon-photon and photonnucleus interactions. The measured p_T broadening for e^+e^- pairs may indicate the existence of a strong magnetic field in the medium. Measurements with $\mu^+\mu^$ pairs provide a complementary channel to investigate these phenomena.

In 2014 and 2016, the STAR experiment at RHIC recorded large samples of Au+Au collisions at $\sqrt{s_{_{\rm NN}}} = 200$ GeV with di-muon triggers utilizing the Muon Telescope Detector. In this talk, we will present invariant mass and yield distributions as a function of centrality for inclusive $\mu^+\mu^-$ pair production at $p_T < 0.15$ GeV/c in the mass range between 2.6 and 10 GeV/ c^2 . The p_T^2 distribution of the excess yields for these very low $p_T \ \mu^+\mu^-$ pairs will also be shown. Physics implications will be discussed together with model comparisons.

Reference

[1] J. Adam et al. (STAR Collaboration), "Low- $p_T e^+e^-$ Pair Production in Au + Au Collisions at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ and U + U Collisions at $\sqrt{s_{_{NN}}} = 193 \text{ GeV}$ at STAR", Phys. Rev. Lett. 121, 132301 (2018). [2] J. Adam et al. (STAR Collaboration), "Observation of excess J/ ψ yield at very low transverse momenta in Au + Au Collisions at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ and U + U Collisions at $\sqrt{s_{_{NN}}} = 193 \text{ GeV}$ at STAR", arXiv: 1904.11658v1.

[3] J. Adam et al. (ALICE Collaboration), "Measurement of an Excess in the Yield of J/ψ at Very Low p_T in Pb-Pb Collisions at $\sqrt{s_{_{NN}}} = 2.76$ TeV", Phys. Rev. Lett. 116, 222301 (2016).