

Production of Jets at STAR

Michal Svoboda¹ (for the STAR collaboration)

Zimányi School Winter Workshop 2024

Budapest, December 3

¹Nuclear Physics Institute, Czech Academy of Sciences

Motivation

- Jets are sprays of particles originating from highly energetic partons created during hard scattering
- Jet quenching measurements provide information about energy loss in the QGP
- Jets are reconstructed using clustering algorithms and connected to theoretical definition

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \cdot \frac{\frac{1}{N_{evt}^{AA}} \frac{d^2 N_{AA}^{jet}}{dp_{T,jet} d\eta}}{\frac{1}{N_{evt}^{pp}} \frac{d^2 N_{pp}^{jet}}{dp_{T,jet} d\eta}}$$

Production of Jets at STAR - Michal Svoboda 3/12/2024

- Relativistic Heavy Ion Collider (RHIC) can collide
 - p+p, p+Au, O+O, Zr+Zr, Ru+Ru, Au+Au ... • Au+Au beams at $\sqrt{s_{NN}}$ = 200 GeV

- Time Projection Chamber (TPC) [|η| < 1]

 Measures momentum of charged particles +identification
 Centrality determination
- Barrel Electromagnetic Calorimeter (BEMC) [$|\eta| < 1$]
 - $_{\odot}$ Energy deposits of neutral particles
 - $_{\odot}$ Provides online trigger
- Beam-beam Counter (BBC) $[3.4 < |\eta| < 5.0]$
 - \circ Proxy for centrality in *p*+Au collisions
 - \circ Trigger for *p*+*p* collisions

- Time Projection Chamber (TPC) $[|\eta| < 1]$
 - $_{\odot}$ Measures momentum of charged particles +identification
 - $_{\circ}$ Centrality determination
- Barrel Electromagnetic Calorimeter (BEMC) $[|\eta| < 1]$
 - Energy deposits of neutral particles
 - Provides online trigger
- Beam-beam Counter (BBC) $[3.4 < |\eta| < 5.0]$
 - \circ Proxy for centrality in *p*+Au collisions
 - $_{\circ}$ Trigger for *p*+*p* collisions

• Time Projection Chamber (TPC) $[|\eta| < 1]$

• Measures momentum of charged particles +identification

Centrality determination

- Barrel Electromagnetic Calorimeter (BEMC) [$|\eta| < 1$]
 - $_{\rm \circ}$ Energy deposits of neutral particles

 $_{\odot}$ Provides online trigger

- Beam-beam Counter (BBC) $[3.4 < |\eta| < 5.0]$
 - \circ Proxy for centrality in *p*+Au collisions
 - Trigger for *p*+*p* collisions

Reconstruction of Jets at STAR

- Jets in the following shown analyses are reconstructed using anti- $k_{\rm T}$ algorithm
- Charged-particle jets: reconstructed from charged-particle tracks in TPC only
- Full jets: reconstructed from charged-particle tracks in TPC + energy in BEMC towers
- Jet measurements in various collision systems (p+p, p+Au, Zr+Zr, Ru+Ru, Au+Au...)
- Reconstruction with low constituent p_{T} cut-off (0.2 GeV/c)
- Kinematic reach up-to jet p_T of 50-60 GeV/c -> allows comparison with LHC experiments

 $d_{i,j} = \min\left(p_{\mathrm{T},i}^{-2}, p_{\mathrm{T},j}^{-2}\right) \frac{\Delta R_{ij}^2}{R^2}$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

Charged-particle jet R_{CP}

$$R_{\rm CP} = \frac{\langle N_{\rm coll}^{\rm per} \rangle}{\langle N_{\rm coll}^{\rm cent} \rangle} \cdot \frac{\frac{1}{N_{\rm evt}^{\rm AA, cent}} \frac{d^2 N_{\rm AA, cent}^{\rm jet}}{d p_{\rm T, jet} d \eta}}{\frac{1}{N_{\rm evt}^{\rm AA, per}} \frac{d^2 N_{\rm AA, per}^{\rm jet}}{d p_{\rm T, jet} d \eta}}$$

- Strong suppression of central data compared to peripheral in Au+Au collisions at 200 GeV
- At RHIC, similar suppression of jet production as at the LHC energies observed

Charged-particle jet R_{AA}

- Significant jet-yield suppression in central Au+Au collisions at 200 GeV
- Weak p_T and R dependence
- LIDO, LBT and SCET calculated for charged-particle jets
- All models are consistent within uncertainties

NLO: Vitev, Zhang, PRL 104, 132001 (2010) SCET: Chien, Vitev, JHEP 05, 023 (2016) Hybrid: Casalderrey-Solana, Gulhan, Milhano, Pablos, Rajagopal, JHEP 03, 135 (2017) LBT: He, Luo, Wang, Zhu, PRC 91, 054908 (2015) LIDO: Ke, Xu, Bass, PRC 100, 064911 (2019)

Jet transverse energy distribution

- Significant jet-yield suppression in central collisions
- Ratio of different jet radii allows better model comparison
- Shown models predict different values for the ratio however all of them are consistent within uncertainties -> better precision needed

 On-going analysis of full jets will allow extension of kinematic reach

Semi-inclusive recoil jet yield modification

$$I_{\rm AA} = \frac{Y^{\rm Au+Au}(p_{\rm T,jet}^{\rm ch}, R)}{Y^{p+p}(p_{\rm T,jet}^{\rm ch}, R)}$$

- Correlation between direct photon and recoil jet (y_{dir}+jet) can provide unmodified reference for mesurement of jet quenching
- Simultaneous measurement of y_{dir} and h+jet correlations enables studies of jet populations with different q/g contributions and pathlength distributions
- I_{AA} is consistent within uncertainties for γ_{dir} and π^0 triggered jets

STAR, arXiv:2309.00145, STAR, arXiv:2309.00156

Semi-inclusive recoil jet yield modification

- Recoil jet yield suppression in Au+Au at 200 GeV, stronger in small R jets -> larger fraction of the initial jet energy is captured in larger jets
- Clear observation of intra-jet broadening
- Models unable to quantitatively describe the effect

Searching for jet quenching in small systems

- Centrality is not easily defined in p+Au collisions
- Event Activity (EA) is the sum of signal (iBBCEsum) from BBC in the Au-going direction
- Backward event activity used as a proxy of centrality in p+Au
- EA percentiles are estimated from iBBCEsum from minimum bias events

Semi-inclusive yield modification in *p*+Au

- Hot nuclear matter effects in p+Au collisions?
- Semi-inclusive jet spectra distinctly suppressed in high-EA events relative to low-EA events
- Suppression similar for both trigger and recoil side

STAR, PRC 110 (2024) 044908

Semi-inclusive yield modification in *p*+Au

- No significant broadening of $\Delta\phi$ for high-EA events relative to low-EA events
- Leading and subleading jets retain their initial back-to-back configuration
- No jet quenching observed in small systems at STAR

$$|\Delta\phi| \equiv |\phi_{\rm jet}^{\rm lead} - \phi_{\rm jet}^{\rm sub}|$$

Production of Jets at STAR - Michal Svoboda 3/12/2024

Conclusions and Outlook

- In A+A collisions, jets are a useful probe to study in-medium energy loss
- STAR observes a strong jet suppression in Au+Au collisions
- No significant suppression observed for p+Au collisions
- New datasets with larger statistics will allow more precise measurements with larger kinematic reach and/or full jets

STAR Beam Use Request Runs 24 - 25

16

