A baryon reconstruction in Au+Au collisions 200 Ge

30 PSI Air

Miroslav Simko for the STAR Collaboration

> Nuclear Physics Institute, **Czech Academy of Sciences**

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

STAR

Outline

- Physics motivation of Λ_c analysis
- STAR with Heavy Flavor Tracker
- Reconstruction of Λ_c
- Simulations and cuts optimization
- Run 2016 expectation at STAR

Motivation

- Never observed in heavy-ion collisions
- Quarks: udc
- Baryon to meson ratios (such as p/π , Λ/K^0) are significantly enhanced in heavy-ion collisions compared to p+p
- Similar enhancement expected in Λ_c/D^0
- Λ_c would bring more insight into coalescence of charm guarks
- Λ_c/D^0 enhancement is one of the signatures of quark gluon plasma

Λ_c baryon

• Challenging to measure, $c\tau \sim 60 \ \mu m$

- Three body decay branching ratios:
- $\Lambda_c^+ \to p \ K^- \pi^+$ (5.0±1.3)% • $\Lambda_c^+ \to p K^*$ (1.6±0.5)% • $\Lambda_c^+ \to \Lambda(1520) \ \pi^+$ (1.8±0.6)% • $\Lambda_c^+ \to K^- \Delta^{++}$ (0.86±0.3)% • Nonresonant (2.6±0.8)%

[Particle Data Group, Chin. Phys. C38 (2014) 090001]

Miroslav Simko, Zimanyi School of Heavy Ion Physics, Budapest

р

HFT performance

- New pixel detector based on MAPS technology
- Pitch: 20.7×20.7 μ m², thickness: 0.4% X₀
- Pointing resolution: \sim 30 μ m at high p_{T}
- 1.2×10^9 events at 200 GeV recorded in 2014
- See Jakub Kvapil's talk (Wednesday 10:00am)

December 7–11, 2015

New D⁰ measurement in run 2014

- Combinatorial background greatly reduced

Λ_c reconstruction

- Three particle decay: BR = 5%, $c\tau \sim 60 \ \mu m$
- Particle identification using TOF $1/\beta$ information and dE/dx in the TPC
- Significant background reduction with the HFT
- Cuts have to be optimized using simulations

Distance between vertices of daughter pairs

р

Data driven Monte Carlo simulation for cuts optimization

- Λ_c decayed in PYTHIA
- Momenta and track positions smeared according to data
- Rough estimate of Λ_c behavior
 - Λ_c with flat rapidity
 - $p_{\rm T}$ distribution from published D⁰ minimum bias Au+Au spectrum
 - Λ_c/D^0 ratio obtained from e+p data (ZEUS) [Eur. Phys. J. C44 (2005) 351]
 - Scaling with N_{coll}

[Phys. Rev. Lett. 113 (2014) 142301]

Background from run 2014 Au+Au data

Comparison: simulation

Background: Wrong charge sign combinations

and background from data

Same cuts applied on simulation and background

Miroslav Simko, Zimanyi School of Heavy Ion Physics, Budapest

D

Primary vertex

Distance between

vertices of daughter

pairs

-- Simulated Λ_c Background (scaled) 0.03 0.035 0.04 10/14

December 7–11, 2015

Miroslav Simko, Zimanyi School of Heavy Ion Physics, Budapest

Decay length, $\cos(\theta)$, and $p_{\rm T}$ cuts most powerful

• The variables are strongly

Multivariate analysis

Multivariate analysis for cuts optimization

- Cuts variables highly correlated
- Multivariate analysis
 - Can create complicated cut structures in N-dimensional spaces
- Toolkit for MultiVariate Data Analysis (TMVA)

[PoS ACAT 040 (2007), arXiv:physics/0703039]

- Rectangular cuts, Neural networks, Boosted decision trees,...
- Ongoing work lacksquare
- Preselection for TMVA:
 - N-dim array of cuts for N variables with small increment
 Maximizing significance: s = $\frac{N_{sig}}{\sqrt{N_{sig} + N_{bg}}}$

 - Select Signal and Background
 - Few iterations

12/14

Outlook: Run 2016 Au+Au at 200 GeV

• 1.2×10^9 events recorded in run 2014 – 2×10^9 are expected in Run 2016

• Pixel improvements:

- Changed cable material copper→aluminum
- Replacement of non-working sensors better efficiency
- Pointing resolution improved

Conclusion

- STAR may be able to measure Λ_c baryons for the first time in heavy-ion collisions thanks to excellent pointing resolution of the HFT
- Important probe for coalescence of c-quarks
- Cuts optimization using data driven simulation
- Multivariate analysis a powerful tool for cuts
- 2016: More statistics with better HFT

Thank you for your attention

Miroslav Simko, Zimanyi School of Heavy Ion Physics, Budapest

15/14

Backup

Miroslav Simko, Zimanyi School of Heavy Ion Physics, Budapest

16/14

Daughters p_T

Silicon Strip Detector (SSD)

	22 cm
	106 cm
	< 1.2
	20
per ladder	16
afers	320
er wafer side	768
er wafer	2
annels	491520
	$75 \times 42 \text{ mm}$
tive size	$73 \times 40 \text{ mm}$
	300 µm
	95 µm
	35 mrad
	20 µm
	740 µm

SSD readout refurbishment

- Upgrade from 200 Hz to 1 kHz
- New
 - 40 ladder cards on detector
 - 5 RDO cards
 - 5 Fiber-to-LVDS boards

Fiber-to-LVDS

RDO board – adapted from PXL

Miroslav Simko, Zimanyi School of Heavy Ion Physics, Budapest

Ladder cards

19/14

Intermediate Silicon Tracker (IST)

Radius Length **∲**-Coverage *l*η*l*-Coverage Number of ladde Number of hybrid Number of senso Number of reado Number of chann $R-\phi$ resolution Z resolution Z pad size $R-\phi$ pad size

	14 cm
	50 cm
	2π
	≤1.2
ers	24
ds	24
ors	144
out chips	864
nels	110592
	172 μm
	1811 µm
	6000 µm
	600 µm
	22/11/1

Pixel detector (PXL)

DCA pointing resolution	(12 \oplus 24 GeV/ $p_T c$)
Radii	Layer 1 at 2.8 cm
	Layer 2 at 8 cm
Pixel size	20.7 μm × 20.7 μm
Hit resolution	3.7 μm
Position stability	6 μm RMS (20 μm envelope)
Radiation length	Layer 1: $X/X_0 < 0.4\%$
	Layer 2: $X/X_0 < 0.5\%$
Number of pixels	~ 356 M
Integration time (affects pileup)	185.6 ms
Radiation environment	20 – 90 kRad/year
	2×10^{11} to 10^{12} 1 MeV n eq/cm ²
Installation time	\sim 1 day

