

Jet substructure measurements elucidating partonic evolution in *p***+***p* **collisions at RHIC**

Monika Robotková *for the STAR Collaboration*

Nuclear Physics Institute, Czech Academy of Sciences Czech Technical University in Prague

Zimanyi School 2024

December 2-6 , 2024

Supported in part by the

Jets and clustering algorithms

- Hard scattered partons evolve via showering and hadronizing
- Jets are collimated sprays of hadrons
- Jets are defined using algorithms

Anti-*k*_r algorithm

Cacciari *et al.,* JHEP 04 (2008) 063

•
$$
d_{ij} = \frac{\min(1/p_{\text{T}i}^2, 1/p_{\text{T}j}^2) \Delta R_{ij}^2}{R}
$$
, $d_{iB} = 1/p_{\text{T}i}^2$

• Clustering starts from the particle with the highest transverse momentum

Cambridge/Aachen (C/A) algorithm

Dokshitzer *et al.,* JHEP 08 (1997) 001

Sa Ma

- $d_{ij} = \Delta R_{ii}^2/R^2$, $d_{iB} = 1$
- Particles are clustered exclusively based on angular separation, ideal for resolving jet substructure

- d_{ii} distance between the particle *i* and $$
- d_{iR} distance of the particle i from the beam
- p_T transverse momentum
- ΔR_{ii} distance between the particle *i* and *j* in (y, ϕ) space
- R jet resolution parameter

Jet substructure

- Distribution of particles inside the jet
- Parton shower is described by momentum and angular scales

Sketches by J. Thaler

Motivation to study jet substructure

• Jets and their substructure contain information on parton shower (perturbative-QCD) and fragmentation (non-perturbative-QCD) processes

- *● p+p* **collisions:**
	- To study vacuum QCD shower at RHIC energies
	- *○* Allow detailed comparisons with QCD predictions and MC generators
- **● A+A collisions:**
	- **○** Study medium modification of intra-jet distributions

STAR experiment for jet studies

● Located at the *Relativistic Heavy Ion Collider* (RHIC) in *Brookhaven National Laboratory* (BNL)

Full azimuthal angle, $|\eta| < 1$

TPC - *Time Projection Chamber*

- Detection of charged particles for jet reconstruction
- Transverse momenta of tracks: $0.2 < p_T < 30$ GeV/*c*

BEMC - *Barrel Electromagnetic Calorimeter*

- Detection of neutral particles for jet reconstruction
- Granularity ($\Delta \eta \times \Delta \varphi$) = (0.05 × 0.05)
- Jet Patch (JP) trigger
- Tower requirements: $0.2 < E_r < 30$ GeV

Dataset: $p + p$ collisions at $\sqrt{s} = 200$ GeV, 2012 $\boldsymbol{\mathsf{Algorithms:}}$ anti- $k_{_{\textsf{T}}}$ + C/A algorithms **Jet resolution parameters:** $R = 0.4$, $R = 0.6$ **Transverse momenta of jets:** $15 < p_{\text{Tiet}} < 50 \text{ GeV/c}$

Jet substructure tools used in STAR experiment

Soft Drop/Collinear Drop

- Grooming is used to remove soft radiation
- \bullet Allows to study different splittings

Energy-energy correlators

- **Final state constituents are** used to study jet evolution
- No additional clustering is needed

Soft Drop/Collinear Drop

Soft Drop

- Grooming technique by removing soft wide-angle radiation in order to mitigate non-perturbative effects
- Declustering is done using C/A algorithm
- Connects parton shower and angular tree

Soft Drop: Larkoski *et al.,* JHEP 05 (2014) 146

Collinear Drop

- Probes the soft component of the jet
- Difference of an observable with two different SoftDrop settings of parameters $(z_{\text{cut},1}, \beta_1)$ and $\left(Z_{\mathsf{cut},2}^{},\boldsymbol{\beta }_2^{}\right)$
- Our case: $(z_{\text{cut},1}, \beta_1) = (0, 0), (z_{\text{cut},2}, \beta_2) = (0.1, 0)$

Soft Drop observables

● Shared momentum fraction *z* **g**

$$
z_{\rm g} = \frac{\min(p_{\rm T,1}, p_{\rm T,2})}{p_{\rm T,1} + p_{\rm T,2}}
$$

- **● Groomed radius** *R* **g**
	- \circ First ΔR_{12} that satisfies Soft Drop condition
- **Splitting scale** k_{τ}
	- $k_T = z_g p_{T,\text{jet}} \sin R_{\text{g}}$
- **● Jet mass** *M*

$$
\mathsf{M}=|\sum_{i\in\mathsf{jet}}\mathsf{p}_i|=\sqrt{E^2-|\vec{\mathsf{p}}|^2}
$$

● Groomed jet mass *M* **g**

STAR

○ Jet mass after grooming

z_{g} vs. R_{g} at the first split and z_{g} for the different split number

 $(2+1)D$ correction is used

STAR

MC models describe the trend of the data

When we move from collinear hard splitting/third split to softer wide angle splitting/first split, *z* g distribution becomes **steeper** and more **perturbative**

Previous STAR jet substructure measurement: **STAR, PLB 811 (2020) 135846**

Monika Robotková **13**

$\log(k_{_{\rm T}})$ vs. $R_{_{\rm g}}$ at the first split

- \bullet log($k_{\overline{T}}$) has strong dependence on $R_{\overline{g}}$ and weak dependence on $p_{\overline{T},\text{jet}}$
- 0 value corresponds to 1 GeV **→**we move from **non-perturbative** to **perturbative** region by increasing *R* g

R **g vs.** *M/M* **at the first splits**

- The ∆*M/M* distribution is **anti-correlated** with *R* g , which is consistent with angular ordering of the parton shower
- Large groomed jet radius → little/no soft wide angle radiation (small ∆*M/M*) in the shower
- MC models describe the trend of the data

Projected N-point energy correlator

Theoretical definition of projected N-point correlator

$$
ENC(R_L) = \left(\prod_{k=1}^N \int d\Omega_{\vec{n}_k}\right) \delta(R_L - \Delta \hat{R}_L) \cdot \frac{1}{(E_{\rm jet})^N} \langle \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \dots \mathcal{E}(\vec{n}_N) \rangle
$$

Chen et al. PRD 102, 5 (2020)

STAR

Experimental construction of two-point and three-point correlator

Normalized EEC =

\n
$$
\frac{1}{\sum_{jets} \sum_{i \neq j} \frac{E_i E_j}{p_{T,jet}^2}} \frac{d\left(\sum_{jets} \sum_{i \neq j} \frac{E_i E_j}{p_{T,jet}^2}\right)}{d(R_L)}
$$
\nNormalized E3C =

\n
$$
\frac{1}{\sum_{jets} \sum_{i \neq j} \frac{E_i E_j E_k}{p_{T,jet}^3}} \frac{d\left(\sum_{jets} \sum_{i \neq j} \frac{E_i E_j E_k}{p_{T,jet}^3}\right)}{d(R_L)}
$$

- Jet evolution is studied using final state constituents
- Allows to separate **perturbative** and **non-perturbative** regimes

EEC and E3C results

- Correlation measurements separate distribution into **non-perturbative** and **perturbative** regimes, separated by **transition** region
- Transition region shifts with jet momentum, manifests universality when scaled by momentum
- Both MC generators and theoretical predictions describe the data well
	- But charge information within the jet is not captured by the MC models For more details see HP2024 [talk](https://indico.cern.ch/event/1339555/contributions/6040791/attachments/2933173/5151424/Tamis_HardProbes_2024_v6.pdf)

Conclusion and future steps

- Jet substructure can be studied by several different tools, such as **Soft Drop**, **Collinear Drop** and **Energy-Energy Correlators**
- Study of different Lund Plane regions allows us to observe the correlations between jet substructure observables
- **Jet substructure measurements at RHIC energies allow to** disentangle **perturbative** (early, wide splits) and mostly **non-perturbative** dynamics (late, narrow splits) within jet showers
- Trend of the $p+p$ data is mostly captured by the MC models and theoretical predictions

Future steps:

Extend preliminary jet substructure measurements in Au+Au to study medium effects in detail

Hard Probes 2020 Austin, Texas

Implement ENCs in heavy-ion collisions

Andres *et al.,* arXiv: 2209.11236

Thank you for your attention!

This work was supported by a grant from The Czech Science Foundation, grant number: 23-07499S
Monika Robotková **20**

Backup

First, second and third splits

EEC: charge-weighted ratio

- Pythia describes perturbative regime better, but neither describe data below transition region
- Implementation of charge dependence/conservation in hadronization mechanism may not fully capture effects

EEC: $p_{\text{T,jet}}$ -shifted distribution

- Shift corrected results on x axis by average $p_{\text{T},\text{jet}}$ in a given bin
- Since location of turnover ∝ Λ_{QCD} *p*_{T, jet}, scaled curves will turn over within the same region
- In this case, average momentum is determined via PYTHIA and applied postcorrection

