

Production of open-charm hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV measured by the STAR experiment

Jan Vanek for the STAR collaboration

NUCLEAR PHYSICS INSTITUTE, CZECH ACADEMY OF SCIENCES

Zimányi School, Budapest, Hungary

5.12.2018

OUTLINE

INTRODUCTION

- Motivation for open-charm hadron measurements in heavy-ion collisions
- STAR detector
- Open-charm hadrons measurements with the HFT

RESULTS

- D[±] and D⁰ nuclear modification factor
- D⁰ elliptic flow
- D⁰ directed flow
- D_s/D^0 ratio
- Λ_c/D^0 ratio

PHYSICS MOTIVATION

- At RHIC energies, charm and bottom quarks are produced predominantly through partonic hard scatterings at early stage of A+A collisions
 - They experience the whole evolution of the system which makes them an excellent probe of the QGP
 - Observed open-charm hadrons come primarily from initially produced charm quarks, small feedown from bottom decays
- Study of various open-charm hadron species in A+A collisions is essential for understanding the QGP properties as well as charm quark hadronization in the medium
 - Energy loss in the medium
 - D⁰, D[±] nuclear modification factor
 - Initial tilt of the bulk + initial electromagnetic field
 - D⁰ directed flow
 - Heavy quark diffusion coefficient
 - D⁰ elliptic flow
 - Hadronization
 - D_s , Λ_c production

STAR DETECTOR

- Solenoidal Tracker At RHIC
- **Heavy Flavor Tracker** (HFT, 2014–2016) is a 4-layer silicon detector
 - MAPS 2 innermost layers, Strip detectors 2 outer layers
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)

PRL 118 212301 (2017)

OPEN-CHARM MEASUREMENTS WITH THE HFT

Decay channels used*:

• D⁺
$$\rightarrow$$
 K⁻ π ⁺ π ⁺ $c\tau$ = (311.8 ± 2.1) μ m BR = (8.98 ± 0.28) %
• D⁰ \rightarrow K⁻ π ⁺ $c\tau$ = (122.9 ± 0.4) μ m BR = (3.93 ± 0.04) %
• D_s⁺ \rightarrow ϕ π ⁺, ϕ \rightarrow K⁻K⁺ $c\tau$ = (149.9 ± 2.1) μ m BR = (2.27 ± 0.08) %
• Λ_c^+ \rightarrow K⁻ π ⁺p $c\tau$ = (59.9 ± 1.8) μ m BR = (6.35 ± 0.33) %

- *Charge conjugate particles are also measured
- The HFT allows direct topological reconstruction of open-charm hadrons through their hadronic decays
- STAR took data with the HFT in 2014 and 2016 for Au+Au collisions at $\sqrt{s_{NN}}=200~{\rm GeV}$
 - 2014: ~900M minimum-bias events
 - 2016: ~1.3B minimum-bias events

D[±] AND D⁰ NUCLEAR MODIFICATION FACTOR

• Nuclear modification factor:

$$R_{\rm AA}(p_{\rm T}) = \frac{\mathrm{d}N_{\rm D}^{\rm AA}/\mathrm{d}p_{\rm T}}{\langle N_{\rm coll}\rangle \,\mathrm{d}N_{\rm D}^{\rm pp}/\mathrm{d}p_{\rm T}}$$

- Reference: combined D⁰ and D* measurement in 200 GeV p+p collisions using 2009 data
- High-p_T D[±] and D⁰ suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium
 - Similar level of suppression for D^{\pm} and D^{0}

DO DIRECTED FLOW

- Predicted contributions:
 - Hydrodynamics
 - Difference between the tilt of the bulk and the density profile of HF production
 - Larger slope of HF than light flavors
 - Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)
 - Initial EM field from passing spectators
 - Predicted opposite slope for D^0 and $\overline{D^0}$
 - Das et. al., Phys Lett B 768, 260 (2017)
- First evidence of non-zero directed flow (v_1) of D^0 and $\overline{D^0}$ as a function of rapidity (y)
 - Negative v_1 slope for both D^0 and $\overline{D^0}$
 - Larger than for kaons
 - Insufficient precision to conclude about the EM induced splitting

Kaons (STAR): PRL 120, 062301 (2018).

D₀ ELLIPTIC FLOW

- Non-zero elliptic flow (v₂) of D⁰
 - Strong collective behavior of charm quarks
- As a function of p_T
 - Mass ordering for $p_T < 2 \text{ GeV}/c$
 - Comparable to light mesons for p_T > 2 GeV/c
- As a function of $(m_{\rm T} m_0)/n_{\rm q}$
 - Follows Number of Constituent Quarks (NCQ) scaling
- Suggests that c quarks might have achieved thermal equilibrium with the QGP

OPEN-CHARM BARYON/MESON RATIO

CENTRALITY DEPENDENCE

- Enhancement of the ratio increases towards central collisions
- The value in peripheral collisions is consistent with p+p measurement at $\sqrt{s} = 7$ TeV by ALICE

Jan Vanek: Open-charm production at STAR

p_{T} DEPENDENCE

- Strong enhancement towards low p_{T}
- Coalescence models closer to data than PYTHIA
- SHM underpredicts data

SHM: Phys.Rev.C 79 (2009) 044905

D_S/D⁰ ENHANCEMENT

- D_s/D^0 ratio as a function of p_T
- Enhancement of D_s/D⁰ ratio in Au+Au collisions with respect to PYTHIA and elementary collisions (ee/pp/ep)
 - Strangeness enhancement
 - Coalescence hadronization
- Comparison to models:
 - TAMU underpredicts measurements
 - Reasonable agreement with SHM

ep/pp/ep avg: EPJ C 76, 397 (2016) TAMU: PRL 110, 112301 (2013) SHM: Phys.Rev.C 79 (2009) 044905

CONCLUSION

- STAR has extensively studied production of open-charm hadrons in heavy-ion collisions
 - Outstanding spatial resolution of the STAR HFT allows precise measurements of open-charm hadrons
 - Presented results provide significant constraints on model calculations
- D⁰ and D[±] mesons are significantly suppressed in central Au+Au collisions
 - Important for understanding charm quark energy loss in the QGP
- D^0 mesons have larger v_1 slope than light-flavor mesons
 - Can probe initial tilt of the bulk
- D^0 mesons have v_2 comparable to light-flavor hadrons
 - c quarks are possibly in thermal equilibrium with the medium
- Λ_c/D^0 and D_s/D^0 enhancements in Au+Au collisions with respect to p+p collisions
 - Important for understanding hadronization process
 - Importance of coalescence

THANK YOU FOR ATTENTION

Acknowledgement: This work is supported by OPVVV grant CZ.02.1.01/0.0/0.0/16_013/0001569 of the Ministry of Education, Youth and Sports of the Czech Republic