Differential measurements of jet sub-structure observables and their correlation in p+p collisions at $\sqrt{s} = 200$ GeV in STAR

Monika Robotkova (for the STAR Collaboration)

Nuclear Physics Institute, Czech Academy of Sciences

Jets can serve as an experimental tool for studying quantum chromodynam-5 ics. In particular, we can explore the properties of parton shower and evolution 6 by measuring jet sub-structure. One of the techniques that allows experimental 7 access to the parton shower is the jet grooming technique called SoftDrop. This 8 analysis extends recent measurements of the jet sub-structure observables based 9 on the SoftDrop algorithm in p+p collisions at $\sqrt{s} = 200$ GeV in the STAR ex-10 periment, including groomed radius (R_q) and shared momentum fraction (z_q) . 11 We present fully corrected multi-differential measurements of jet sub-structure 12 observables at the first split and their correlations via z_q vs. R_q for the first 13 time for jets of different transverse momenta and radii. We show that z_q has 14 a strong dependence on R_q and a weak dependence on jet transverse momen-15 tum. We compare our measurements to the state-of-the-art Monte Carlo mod-16 els. We discuss the impact of variations in parton shower (perturbative) and 17 hadronization/underlying-event (non-perturbative) modeling on the measured 18 correlations between sub-structure observables. We will also preview upcoming 19 measurements that explore the splitting scale (k_T) and groomed mass fraction 20 (μ) in our differential framework. 21