Study of nuclear deformation effects in Au+Au and U+U collisions from STAR experiment

Jiangyong Jia, Stony Brook University

Nuclear deformation is a ubiqutous phenomenon for most atomic nuclei, reflecting collective motion induced by interaction between valance nucleons and shell structure. In most cases, the deformation has a quadrupole shape β that is axially and refection symmetric, either prolate $\beta > 0$ or oblate $\beta < 0$. Collisions of deformed nucleus lead to large shape and size fluctuations in the initial state geometry, which after collective expansion, lead to enhance fluctuation of harmonic flow v_n and event-by-event mean transverse momentum $[p_T]$. Therefore detailed study of the v_n , and $[p_T]$ and correlations between them could probe the deformation parameter. In this talk, we present results of $[p_T]$ fluctuations and $v_n^2 - [p_T]$ correlation for n = 2, 3, 4 in near-spherical ¹⁹⁷Au+¹⁹⁷Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV and highly-deformed ²³⁸U+²³⁸U collisions at $\sqrt{s_{\rm NN}} = 193$ GeV. Significant differences for mean, variance c_2 and skewness c_3 of $[p_T]$ fluctuations are observed between the two systems as a function of centrality. The recently proposed intensive skewness of $c_3 \langle [p_T] \rangle / c_2^2$, sensitive to the initial size fluctuation, is found to differ significantly between the two systems, particular in the ultra-central collisions. The $v_2^2 - [p_T]$ results remain positive over the full centrality in Au+Au collisions, while they change sign in 0-5% central U+U collisions. In contrast, the $v_3^2 - [p_T]$ and $v_4^2 - [p_T]$ results are nearly identical between these two systems. The sign-change of $v_2^2 - [p_T]$ is used to provide novel ways to constrain β for Uranium nuclei in heavy ion collisions. Comparison with state-of-art model calculations is discussed.

PACS numbers:

2

3

5

6

7 8 9

10

11

12

13

14

15

16

17