Measurement of D^0 Meson-Tagged Jet Generalized Angularities in Au+Au Collisions at $\sqrt{s_{\rm NN}} = 200$ GeV at STAR

Ondrej Lomicky

October 31, 2024

Abstract

¹ The Quark-Gluon Plasma (QGP) produced in heavy-ion collisions can be stud-² ied using hard probes, such as D^0 meson-tagged jets created at early stage of the ³ collision. The jet yield and its substructure are modified by interactions with ⁴ the medium, compared to vacuum propagation. This phenomenon is known as ⁵ jet quenching.

⁶ The generalized angularities $\lambda_{\alpha}^{\kappa}$ characterize the jet substructure, and they ⁷ can distinguish jets initiated by light and heavy quarks, and gluons, where ⁸ the different choice of κ and α parameters tunes the discriminating power of ⁹ the observable. Measurements of the nuclear modification factor $R_{\rm CP}$ of D^0 ¹⁰ jets as a function of the generalized angularities in heavy-ion collisions open ¹¹ ways to investigate modifications of heavy quark fragmentation function and jet ¹² substructure in the QGP.

In this contribution, we report the measurement of D^0 meson-tagged jets in 13 Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \,{\rm GeV}$ by the STAR experiment at RHIC. We 14 present for the first time distributions of different angularities, such as girth λ_1^1 , 15 thrust λ_2^1 , momentum dispersion $\sqrt{\lambda_0^2}$, or Les Houches Angularity $\lambda_{0.5}^1$. We also 16 show the nuclear modification factor $R_{\rm CP}$ as a function of these generalized an-17 gularities to explore potential modifications of heavy-flavor jets in the medium. 18 These results could help distinguish between different models of jet quenching 19 and in-medium energy loss of heavy flavor quarks. 20