Measurement of D⁰ Meson Tagged Jets in Au+Au Collisions at $\sqrt{s_{\rm NN}} = 200$ GeV at STAR

Ondrej Lomicky

February 2, 2024

Abstract

18

The Quark-Gluon Plasma (QGP) produced in heavy-ion collisions can be studied using hard probes, such as D^0 -meson tagged jets created at the initial collision stage. The jet yield, shape, and its sub-structure get modified due to interactions with the medium compared with its vacuum propagation. This phenomenon is known as jet quenching.

The transverse momentum $(p_{\rm T})$ fraction of the jet, carried by hadrons along the jet axis $(z = \vec{p}_{T,hadron} \cdot \vec{p}_{T,jet}/|p_{T,jet}|^2)$, is related to jet fragmentation. The 8 generalized angularities $\lambda_{\alpha}^{\kappa}$ characterize the jet substructure and they can dis-9 tinguish jets initiated by light and heavy quarks, and gluons where the different 10 choice of κ and α parameters tunes the sensitivity of the observable to various 11 jet aspects. Measurements of the nuclear modification factor $R_{\rm CP}$ of D^0 jets 12 as a function of the transverse momentum fraction z and the generalized angu-13 larities in heavy-ion collisions open ways to investigate modifications of heavy 14 quark fragmentation function and jet substructure in the QGP. In addition, 15 studying radial distribution of D^0 mesons in jets allows one to investigate the 16 charm quark diffusion in the medium. 17

In this contribution, we report the measurement of D^0 meson tagged jets in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV by the STAR experiment at RHIC. We present $R_{\rm CP}$ as a function of $p_{\rm T,jet}$ and z, measurements of generalized angularities, and the radial profile of the D^0 mesons for D^0 jets. These results may help distinguish between various models describing jet quenching and heavy flavor quark in-medium energy loss.