¹ Measurements of Transverse Spin Dependent $\pi^+\pi^-$ Azimuthal Correlation ² Asymmetry and Unpolarized $\pi^+\pi^-$ Cross Section in *pp* Collisions at $\sqrt{s} = 200$ ³ GeV at STAR

Babu Pokhrel for the STAR Collaboration Temple University, Philadelphia, PA, USA

Abstract

4

The transversity distribution function, $h_1^q(x)$, where x is the longitudinal momentum fraction of the 6 proton carried by quark q, encodes the proton's transverse spin structure at the leading twist. Extrac-7 tion of it is difficult because of its chiral-odd nature. However, it can be coupled with a spin-dependent 8 interference fragmentation function (FF), $H_1^{\triangleleft,q}$, in polarized proton-proton $(p^{\uparrow}p)$ collisions. The cou-9 pling of $h_1^q(x)$ and $H_1^{\triangleleft,q}$ produces an experimentally measurable azimuthal correlation asymmetry, 10 A_{UT} , between the spin of the fragmenting quark and the final state di-hadron. A model-independent 11 extraction of transversity from these measurements relies on the knowledge of di-hadron FFs, namely 12 the unpolarized di-hadron FFs. Extraction of these FFs requires measurements of the unpolarized 13 di-hadron cross section in pp collisions, which are desperately needed. We will present preliminary 14 results on A_{UT} for $\pi^+\pi^-$ pairs with $p^{\uparrow}p$ data at $\sqrt{s} = 200$ GeV taken in 2015, as well as an update on 15 the unpolarized $\pi^+\pi^-$ cross-section measurement with the pp data at $\sqrt{s} = 200$ GeV taken in 2012, 16 at the STAR experiment. 17