¹ Measurements of Transverse Spin Dependent $\pi^+\pi^-$ Azimuthal Correlation ² Asymmetry and Unpolarized $\pi^+\pi^-$ Cross Section in *pp* Collisions at $\sqrt{s} = 200$ ³ GeV at STAR

Babu Pokhrel for the STAR Collaboration Temple University, Philadelphia, PA, USA

4

5

Abstract

The transversity distribution function, $h_1^q(x)$, encapsulates the transverse spin structure of the pro-6 ton at the leading twist, where x represents the longitudinal momentum fraction carried by the quark 7 q. The extraction of $h_1^q(x)$ poses a formidable challenge due to its chiral-odd nature. Measurements of 8 final-state di-hadron pairs in transversely polarized proton-proton $(p^{\uparrow}p)$ collisions directly probe the 9 collinear quark transversity via coupling with a chiral-odd interference fragmentation function, $H_1^{\triangleleft,q}$. 10 This coupling results in an experimentally measurable azimuthal correlation asymmetry, A_{UT} . The 11 asymmetry originates from the interplay between the spin orientation of the fragmenting quark and 12 the resulting di-hadron in the final state. Thus, it necessitates precise knowledge of unpolarized di-13 hadron fragmentation functions (FFs) to achieve a model-independent extraction of the transversity 14 from these measurements. These FFs can be obtained by measuring the unpolarized di-hadron cross 15 section in pp collisions. We will present preliminary results on the A_{UT} for $\pi^+\pi^-$ pairs using $p^\uparrow p$ data 16 collected by the STAR experiment at center-of-mass energy of $\sqrt{s} = 200$ GeV in 2015. Additionally, 17 we will present preliminary results of the unpolarized $\pi^+\pi^-$ cross section using pp data at $\sqrt{s} = 200$ 18 GeV collected in 2012. 19